ORIGINAL PAPER
Numerical study of turbulent separated flows in axisymmetric diffusers based on a two-fluid model
 
More details
Hide details
1
Information system and mathematical sciences, Plekhanov Russian University of Economics, Uzbekistan
 
2
Fluid mechanics, 1Institute of Mechanics and Earthquake Engineering M.T. Urazbaev, Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
 
3
Fluid mechanics, Institute of Mechanics and Earthquake Engineering M.T. Urazbaev, Academy of Sciences of the Republic of Uzbekistan., Uzbekistan
 
4
Applied Sciences, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan
 
 
Submission date: 2024-05-08
 
 
Final revision date: 2024-07-24
 
 
Acceptance date: 2024-07-25
 
 
Online publication date: 2024-12-12
 
 
Publication date: 2024-12-12
 
 
Corresponding author
Bokhodir Kholboev   

Information system and mathematical sciences, Plekhanov Russian University of Economics, 3 Shakhriabad, T, 100164, Tashkent, Uzbekistan
 
 
International Journal of Applied Mechanics and Engineering 2024;29(4):121-142
 
KEYWORDS
TOPICS
ABSTRACT
This paper discusses a numerical study of turbulent flow at Re = 1.56×104 in an axisymmetric diffuser with half-angle expansion α=14°, 18° и 90°. The results obtained are compared with known experimental data. The flow at the diffuser inlet is fully developed turbulent. To simulate the flow, a relatively recently developed two-fluid turbulence model in the Comsol Multiphysics software package was used. The paper also presents numerical results of the well-known SST and SA turbulence models, which are included in the Comsol Multiphysics software package. It is shown that the two-fluid turbulence model in the Comsol Multiphysics software package is capable of producing more accurate results than known models. In addition, it demonstrated good convergence and stability.
REFERENCES (32)
1.
Chang P.K.(1971): Separation of flow.– Elsevier, eBook ISBN: 9781483181288, p.796.
 
2.
John D. and Anderson J.R. (2008): Introduction to Flight.– McGraw-Hill, 616p.
 
3.
Young A.D. (1975): Aerodynamics.– by Clancy L.J., Pitman, pp.610, J. Fluid Mech., vol.77, No.3, pp.623-624, 1976, doi:10.1017/S0022112076212292.
 
4.
Cebeci T., Mosinskis G.J. and Smith A.M.O. (1972): Calculation of separation points in incompressible turbulent flows.– J. Aircr., vol.9, No.9, pp.618-624. https://doi.org/10.2514/3.5904....
 
5.
Uruba V. and Knob M. (2009): Dynamics of a boundary layer separation.– Eng. Mech., vol.16, No.1, pp.29-38.
 
6.
Gustavsson J. (1998): Experiments on turbulent flow separation.– Masters, vol.2, p.2.
 
7.
Yen S.C. and Yang C.W. (2011): Flow patterns and vortex shedding behavior behind a square cylinder.– J. Wind Eng. Ind. Aerodyn., vol.99, No.8, pp.868-878. https://doi.org/10.1016/j.jwei....
 
8.
Wong M.K., Sheng L.C., Azwadi C.S.N. and Hashim G.A. (2015): Numerical study of turbulent flow in pipe with sudden expansion.– J. Adv. Res. Fluid Mech. Therm. Sci., vol.6, No.1, pp.34-48 ISSN (online): 2289-7879.
 
9.
Berdanier R.A. (2011): Turbulent flow through an asymmetric plane diffuser.– Masters Purdue Univ. West Lafayette, Indiana, US. pp.1-35.
 
10.
Azad S., Riasi A., Mahmoodi Darian H. and Amiri Moghadam H. (2017): Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow.– Journal of Computational Applied Mechanics, vol.48, No.1, pp.65-74, DOI:10.22059/JCAMECH.2017.232031.138.
 
11.
Ghasemian M. and Nejat A. (2015): Aerodynamic noise computation of the flow field around NACA 0012 airfoil using large eddy simulation and acoustic analogy.– Journal of Computational Applied Mechanics, vol.46, No.1, pp.41-50, DOI:10.22059/JCAMECH.2015.53392.
 
12.
Javanbakht A. and Ahmadi Danesh Ashtian H. (2018): Impeller and volute design and optimization of the centrifugal pump with low specific speed in order to extract performance curves.– Journal of Computational Applied Mechanics, vol.49, No.2, pp.359-366, DOI: 10.22059/JCAMECH.2018.246099.211.
 
13.
Chandavari V. and Palekar S. (2014): Diffuser angle control to avoid flow separation.– Int. J. Tech. Res. Appl., vol.2, No.5, pp.16-21.
 
14.
Fakhar M.H., Fakhar A., Tabatabaei H. and Nouri-Bidgoli H. (2020): Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations.– Journal of Computational Applied Mechanics, vol.51, No.1, pp.122-128, DOI:10.22059/JCAMECH.2020.300244.496.
 
15.
Noghrehabadi A., Daneh Dezfuli A. and Alipour F. (2019): Solving single phase fluid flow instability equations using Chebyshev Tau-QZ polynomial.– Journal of Computational Applied Mechanics, vol.50, No.1, pp.135-139, DOI:10.22059/JCAMECH.2018.250600.235.
 
16.
Abdelkarim B. and Djedid T. (2019): Numerical investigation of natural convection phenomena in uniformly heated trapezoidal cylinder inside an elliptical enclosure.– Journal of Computational Applied Mechanics, vol.50, No.2, pp.315-323, DOI: 10.22059/JCAMECH.2019.291495.442.
 
17.
Le H., Moin P. and Kim J. (1997): Direct numerical simulation of turbulent flow over a backward-facing step.– J. Fluid Mech., vol.330, pp.349-374, DOI: https://doi.org/10.1017/S00221....
 
18.
Durst F., Melling A. and Whitelaw J.H. (1974): Low Reynolds number flow over a plane symmetric sudden expansion.– J. Fluid Mech., vol.64, No.1, pp.111-128, DOI: https://doi.org/10.1017/S00221....
 
19.
Cherdron W., Durst F. and Whitelaw J.H. (1978): Asymmetric flows and instabilities in symmetric ducts with sudden expansions.– J. Fluid Mech., vol.84, No.1, pp.13-31, DOI: https://doi.org/10.1017/S00221....
 
20.
Törnblom O., Herbst A. and Johansson A.V (2004): Separation control in a plane asymmetric diffuser by means of streamwise vortices experiment, modelling and simulation.– in The 5th Symposium on Smart Control of Turbulence, pp.1-21.
 
21.
Stieglmeier M., Tropea C., Weiser N. and Nitsche W. (1989): Experimental investigation of the flow through axisymmetric expansions.– J. Fluids Eng. Trans. ASME, vol.111, No.4, pp.464-471, doi: 10.1115/1.3243669.
 
22.
Sagar D., Paul A.R. and Jain A. (2011): Computational fluid dynamics investigation of turbulent separated flows in axisymmetric diffusers.– Int. J. Eng. Sci. Technol., vol.3, No.2, DOI:10.4314/ijest.v3i2.68138, pp.104-109.
 
23.
Malikov Z. (2020): Mathematical model of turbulence based on the dynamics of two fluids.– Appl. Math. Model., vol.82, pp.409-436, https://doi.org/10.1016/j.apm.....
 
24.
Malikov Z.M. and Madaliev M.E. (2021): New two-fluid turbulence model based numerical simulation of flow in a flat suddenly expanding channel.– Her. Bauman Moscow State Tech. Univ. Ser. Nat. Sci., No.4, doi: 10.18698/1812-3368-2021-4-24-39.
 
25.
Madaliev M.E. (2023): Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence.– Vestn. Tomsk. Gos. Univ. Mat. i Mekhanika, No.82, doi: 10.17223/19988621/82/10.
 
26.
Malikov Z.M. and Madaliev M.E. (2021): Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models.– Comput. Res. Model., vol.13, No.6, doi: 10.20537/2076-7633-2021-13-6-1149-1160. DOI: 10.20537/2076-7633-2021-13-6-1149-1160.
 
27.
Menter F. (1993): Zonal two equation kw turbulence models for aerodynamic flows.– in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, p.2906. https://doi.org/10.2514/6.1993....
 
28.
Spalart P. and Allmaras S. (1992): A one-equation turbulence model for aerodynamic flows.– in 30th Aerospace Sciences Meeting and Exhibit, p.439, https://doi.org/10.2514/6.1992....
 
29.
Spalart P.R. (1997): Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach.– in Proceedings of the First AFOSR International Conference on DNS/LES, pp.137-147, CRID 1571698601146488576.
 
30.
Patankar S. (2018): Numerical Heat Transfer and Fluid Flow.– Taylor & Francis, https://doi.org/10.1201/978148....
 
31.
Menter F.R. (2002): Methoden, Moeglichkeiten und Grenzen numerischer Stroemungsberechnungen.– Numet. Erlangen, pp.1-15.
 
32.
Kholboev B.M., Navruzov D.P., Asrakulova D.S., Engalicheva N.R. and Turemuratova A.A. (2022): Comparison of the results for calculation of vortex currents after sudden expansion of the pipe with different diameters.– International Journal of Applied Mechanics and Engineering, vol.27, No.2, pp.115-123, https://doi.org/10.2478/ijame-....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top