ORIGINAL PAPER
Oblique Water Wave Diffraction by a Step
 
 
 
More details
Hide details
1
Department of Mathematics, Prasannadeb Women's College, Jalpaiguri-735101, West Bengal, India
 
 
Online publication date: 2017-03-04
 
 
Publication date: 2017-02-01
 
 
International Journal of Applied Mechanics and Engineering 2017;22(1):35-47
 
KEYWORDS
ABSTRACT
This paper is concerned with the problem of diffraction of an obliquely incident surface water wave train on an obstacle in the form of a finite step. Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for reflection and transmission coefficients which are depicted graphically. From these figures various interesting results are discussed.
 
REFERENCES (19)
1.
Dean W.R. (1945): On the reflection of surface waves by a submerged plane barrier. – Proc. Camb. Phil. Soc., vol.41, pp.231-238.
 
2.
Ursell F. (1947): The effect of a fixed barrier on surface waves in deep water. – Proc. Camb. Phil. Soc., vol.43, pp.374-382.
 
3.
Evans D.V. (1970): Diffraction of water waves by a submerged vertical plate. – J. Fluid Mech., vol.40, pp.433-451.
 
4.
Porter D. (1972): The transmission of surface waves through a gap in a vertical barrier. – Proc. Camb. Phil. Soc., vol.71, pp.411-422.
 
5.
Mandal B.N. and Dolai D.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth. – Appl. Ocean Res., vol.16, pp.195-203.
 
6.
Roseau M. (1976): Asymptotic wave theory. – North Holland, pp.311-347.
 
7.
Kreisel G. (1949): Surface waves. – Quart. Appl. Math., vol.7, pp.21-44.
 
8.
Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. – Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89.
 
9.
Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. – J. Fluid Mech., vol.83, pp.289-310.
 
10.
Newman J.N. (1965): Propagation of water waves over an infinite step. – J. Fluid Mech., vol.23, pp.399-415.
 
11.
Miles J.W. (1967): Surface wave scattering matrix for a shelf. – J. Fluid Mech., vol.28, pp.755-767.
 
12.
Mandal B.N. and Gayen, Rupanwita (2006): Water wave scattering by bottom undulations in the presence of a thin partially immersed barrier. – Appl. Ocean Res., vol.28, pp.113-119.
 
13.
Dolai D.P. and Dolai P. (2010): Interface wave diffraction by bottom undulations in the presence of a thin plate submerged in lower fluid. – Int. J. Appl. Mech. and Engg. vol.15, pp.1017-1036.
 
14.
Stoker J.J. (1957): Water Waves. – New York: Interscience.
 
15.
Wehausen J.V. and Laiton E.V. (1960): Surface Waves. – Handbuch der Physik: Springer.
 
16.
Bartholomeusz E.F. (1958): The reflection of long waves at a step. – Proc. Camb. Phil. Soc., vol.54, pp.106-118.
 
17.
Evans D.V. and McIver P. (1984): Edge waves over a shelf: full linear theory. – J. Fluid Mech., vol.142, pp.79-95.
 
18.
Havelock T.H. (1929): Forced surface waves on water. – Phil. Mag., vol.8, pp.569-576.
 
19.
Kanoria M., Dolai D.P. and Mandal B.N. (1999): Water wave scattering by thick vertical barriers. – J. Eng. Math., vol.35, pp.361-384.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top