ORIGINAL PAPER
On Discontinuties in Thermoelastic Plane Waves without Energy Dissipation Due to a Thermo-Mechanical Shock
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Jadavpur University Kolkata-700032, INDIA
 
 
Online publication date: 2013-06-08
 
 
Publication date: 2013-06-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(2):503-519
 
KEYWORDS
ABSTRACT
The present paper deals with the thermoelastic plane waves due to a thermo-mechanical shock in the form of pulse at the boundary of a homogeneous, isotropic thermoelastic half-space. The field equations of the Green- Naugdhi theory without energy dissipation for an thermoelastic solid in the generalized thermoelasticity theory are written in the form of a vector-matrix differential equation using Laplace transform techniques and then solved by an eigenvalue approach. Exact expressions for the considered field variables are obtained and presented graphically for copper-like material. The characteristic features of the present theory are analyzed by comparing these solutions with their counterparts in other generalized thcrmoelasticity theories.
REFERENCES (23)
1.
Chandrasekharaiah D.S. (1986): Thermoelasticity with second sound-A review. - Appl. Mech. Rev., vol.39, pp.355-376.
 
2.
Chandrasekharaiah D.S. (1996a): A uniqueness theorem in the theory of thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.19, pp.267-272.
 
3.
Chandrasekharaiah D.S. (1996b): A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. - J. Elasticity, vol.43, pp.279-28.
 
4.
Chadwick P. (1960): Thermoelasticity, the dynamic theory, In: (I.N. Sneddon and R. Hill Eds.). - Progress in Solid Mechanics, vol.I., pp.265-328. North Holland, Amsterdam .
 
5.
Dhaliwal R.S. and Rokne J.G. (1988): One-dimensional generalized thermoelastic problem for a half-space. - J. Thermal Stresses, vol.11, pp.257-271.
 
6.
Dhaliwal R.S. and Rokne J.G. (1989): One-dimensional thermal shock problem with two relaxation times. - J. Thermal Stresses, vol.12, pp.259-279.
 
7.
Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
 
8.
Green A.E. and Naghdi P.M. (1991): A re-examination of the basic postulate of thermo-mechanics. - Proc. Roy. Soc. London, vol.432, pp.171-194.
 
9.
Green A.E. and Naghdi P.M. (1992): An unbounded heat wave in an elastic solid. - J. Thermal Stresses, vol.15, pp.253-264.
 
10.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. - J. Elasticity, vol.31, pp.189-208.
 
11.
Ignaczak J. (1989): Generalized thermoelasticity and its applications. In: (R.B. Hetnarski, Ed.). - J. Thermal Stresses, vol.3, pp.280-353.
 
12.
Joseph D.D. and Preziosi L. (1988): Heat waves.- Rev. Mod. Phys., vol.61, pp.41-73.
 
13.
Lord H.W. and Shulman Y.A. (1967): A generalized dynamical theory of thermoelasticity. - J. Mech. Phys. Solids, vol.15, pp.299-309.
 
14.
Lahiri A., Das B. and Sarkar S. (2010): Thermal stresses in an isotropic elastic slab due to prescribed surface temperature. - Adv. Theor. Appl. Mech., vol.3, pp.451-467.
 
15.
Mukhopadhyay S. (2002): Thermoelastic interactions without energy dissipation in an unbounded medium with a spherical cavity due to a themal shock at the boundary. - J. Themal Stresses, vol.25, pp.877-887.
 
16.
Mukhopadhyay S. and Kumar R. (2008): A study of generalized thermoelastic interactions in an unbounded medium with a spherical cavity. - Comput. Math. Appl., vol.56, pp.2329-2339.
 
17.
Mukhopadhyay S. (2004 ): Thermoelastic interactions without energy dissipation in an unbounded body with a spherical cavity subjected to harmonically varying temperature. - Mech. Res. Comm ., vol.31, pp.81-89.
 
18.
Nowinski J. (1978): Theory of thermoelasticity with applications. - Sijtho and Noordho International Publishers, Alphen Aan Den Rijn.
 
19.
Roychoudhuri S.K. and Dutta P.S. (2005a): Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. - Int. J. Solids and Structures, vol.42, pp.4192-4203.
 
20.
Roychoudhuri S.K. and Bandyapadhyay N. (2004): Thermo-elastic wave propagation in a rotating elastic medium without energy dissipation. - Int. J. Math. and Math. Sci., vol.1, pp.99-107.
 
21.
Roychoudhuri S.K. and Bandyapadhyay N. (2005b): Thermo-elastic wave propagation without energy dissipation in an elastic half-space. - Bull. Cal. Math. Soc., vol.97, pp.489-502.
 
22.
Sharma J.N. and Chouhan R.S. (1999): On the problem of body forces andheat sources in thermo-elasticity without energy dissipation.- Ind. J. Pure and Appl. Math., vol.30, pp.595-610.
 
23.
Sarkar N. and Lahiri A. (2011): A three-dimesional thermoelastic problem for a half-space without energy dissipations.-Int. J. Eng. Sci., Accepted for Publications, doi:10.1016/j.ijengsci.2011.08.005.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top