ORIGINAL PAPER
Optimisation of material composition in functionally graded plates using a structure-tuned deep neural network
,
 
,
 
 
 
 
More details
Hide details
1
Mechanical Engineering, Sanyo-Onoda City University, Japan
 
2
Mechanical Systems Engineering, National Institute of Technology, Asahikawa College, Japan
 
 
Submission date: 2024-04-25
 
 
Final revision date: 2024-08-02
 
 
Acceptance date: 2024-08-13
 
 
Online publication date: 2024-12-12
 
 
Publication date: 2024-12-12
 
 
Corresponding author
Ryoichi Chiba   

Mechanical Engineering, Sanyo-Onoda City University, 1-1-1 Daigakudori, 7560884, Sanyo-Onoda, Japan
 
 
International Journal of Applied Mechanics and Engineering 2024;29(4):78-95
 
KEYWORDS
TOPICS
ABSTRACT
This study presents a neural network (NN)-based approach for optimising material composition in multi-layered functionally graded (FG) plates to minimise steady-state thermal stress. The focus is on the metal-ceramic composition across the thickness of heat-resistant FG plates, with the volume fractions of the ceramic constituent in each layer treated as design variables. A fully-connected NN, configured with an open-source Bayesian optimisation framework, is employed to predict the maximum in-plane thermal stress for various combinations of design variables. The optimal distribution of material composition is determined by applying a backpropagation algorithm to the NN. Numerical computations on ten- and twelve-layered FG plates demonstrate the usefulness of this approach in designing FG materials. NNs trained with 8000 samples enable the successful acquisition of valid optimal solutions within a practical timeframe.
REFERENCES (41)
1.
Neubrand A. and Rödel J. (1997): Gradient materials: an overview of a novel concept.– Int. J. Materials Research, vol.88, No.5, pp.358-371, 10.3139/ijmr-1997-0066.
 
2.
Nikbakht S., Kamarian S. and Shakeri M. (2019): A review on optimization of composite structures Part II: Functionally graded materials.– Composite Structures, vol.214, pp.83-102, 10.1016/j.compstruct.2019.01.105.
 
3.
Nayak P. and Armani A. (2022): Optimal design of functionally graded parts.– Metals, vol.12, No.8, pp.1335, 10.3390/met12081335.
 
4.
Bobaru F. (2007): Designing optimal volume fractions for functionally graded materials with temperature-dependent material properties.– Trans. ASME J. Applied Mech., vol.74, No.5, pp.861-874, 10.1115/1.2712231.
 
5.
Taheri A.H., Hassani B. and Moghaddam N.Z. (2014): Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach.– Int. J. Solids Structures, vol.51, No.2, pp.416-429, 10.1016/j.ijsolstr.2013.10.014.
 
6.
Abdalla H.M.A., Casagrande D. and Moro L. (2020): Thermo-mechanical analysis and optimization of functionally graded rotating disks.– J. Strain Analysis Eng. Design, vol.55, No.5-6, pp.159-171, 10.1177/0309324720904793.
 
7.
Roque C.M.C. and Martins P.A.L.S. (2015): Differential evolution for optimization of functionally graded beams.– Composite Structures, vol.133, pp.1191-1197, 10.1016/j.compstruct.2015.08.041.
 
8.
Ootao Y., Kawamura R., Tanigawa Y. and Ishimaru O. (1998): Optimization of material composition of hollow circular cylinder of functionally graded material for thermal stress relaxation making use of genetic algorithm.– Trans. Japan Soc. Mech. Eng. Series A, vol.64, No.626, pp.2645-2652, 10.1299/kikaia.64.2645.
 
9.
Shimojima K., Yamada Y., Mabuchi M., Saito N., Nakanishi M., Shigematsu I., Nakamura M., Asahina T. and Igarashi T. (1999): Optimization method of FGM compositional distribution profile design by genetic algorithm.– Materials Science Forum, vol.308-311, pp.1006-1011.
 
10.
Ootao Y., Tanigawa Y. and Ishimaru O. (2000): Optimization of material composition of functionally graded plate for thermal stress relaxation using a genetic algorithm.– J. Thermal Stresses, vol.23, No.3, pp.257-271, 10.1080/014957300280434.
 
11.
Goupee A.J. and Vel S.S. (2006): Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm.– Computer Methods Applied Mech. Eng., vol.195, No.44, pp.5926-5948, 10.1016/j.cma.2005.09.017.
 
12.
Chiba R. and Sugano Y. (2012): Optimisation of material composition of functionally graded materials based on multiscale thermoelastic analysis.– Acta Mechanica, vol.223, No.5, pp.891-909, 10.1007/s00707-011-0610-z.
 
13.
Fereidoon A., Sadri F. and Hemmatian H. (2012): Functionally graded materials optimization using particle swarm-based algorithms.– J. Thermal Stresses, vol.35, No.4, pp.377-392, 10.1080/01495739.2012.663688.
 
14.
Xu Y., Zhang W., Chamoret D. and Domaszewski M. (2012): Minimizing thermal residual stresses in C/SiC functionally graded material coating of C/C composites by using particle swarm optimization algorithm.– Computational Materials Science, vol.61, pp.99-105, 10.1016/j.commatsci.2012.03.030.
 
15.
Kou X.Y., Parks G.T. and Tan S.T. (2012): Optimal design of functionally graded materials using a procedural model and particle swarm optimization.– Computer-Aided Design, vol.44, No.4, pp.300-310, 10.1016/j.cad.2011.10.007.
 
16.
Eldeeb A., Shabana Y. and Elsawaf A. (2023): Thermoelastic stress mitigation and weight reduction of functionally graded multilayer nonuniform thickness disc.– J. Strain Analysis Eng. Design, vol.58, No.8, pp.661-671, 10.1177/03093247231165091.
 
17.
Eldeeb A.M., Shabana Y.M. and Elsawaf A. (2023): Particle swarm optimization for the thermoelastic behaviors of functionally graded rotating nonuniform thickness sandwich discs.– Arabian J. Science Eng., vol.48, No.3, pp.4067-4079, 10.1007/s13369-022-07351-x.
 
18.
Kamgar R., Rahmani F. and Rahgozar R. (2024): Geometrical and material optimization of the functionally graded doubly-curved shell by metaheuristic optimization algorithms. Structures, vol.62, pp.106254, doi.org/10.1016/j.istruc.2024.106254.
 
19.
Mozafari H., Ayob A. and Kamali F. (2012): Optimization of functional graded plates for buckling load by using imperialist competitive algorithm.– Procedia Technology, vol.1, pp.144-152, 10.1016/j.protcy.2012.02.028.
 
20.
Cross S.R., Woollam R., Shademan S. and Schuh C.A. (2013): Computational design and optimization of multilayered and functionally graded corrosion coatings.– Corrosion Science, vol.77, pp.297-307, 10.1016/j.corsci.2013.08.018.
 
21.
Lieu Q.X. and Lee J. (2017): Modeling and optimization of functionally graded plates under thermo-mechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm.– Composite Structures, vol.179, pp.89-106, 10.1016/j.compstruct.2017.07.016.
 
22.
Cho J.R. and Shin S.W. (2004): Material composition optimization for heat-resisting FGMs by artificial neural network.– Composites Part A, vol.35, No.5, pp.585-594, 10.1016/j.compositesa.2003.12.003.
 
23.
Yas M.H., Kamarian S. and Pourasghar A. (2014): Application of imperialist competitive algorithm and neural networks to optimise the volume fraction of three-parameter functionally graded beams.– J. Experimental Theoretical Artificial Intelligence, vol.26, No.1, pp.1-12, 10.1080/0952813X.2013.782346.
 
24.
Do D.T.T., Lee D. and Lee J. (2019): Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems.– Composites Part B, vol.159, pp.300-326, 10.1016/j.compositesb.2018.09.087.
 
25.
Truong T.T., Lee S. and Lee J. (2020): An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams.– Composite Structures, vol.233, pp.111517, 10.1016/j.compstruct.2019.111517.
 
26.
Do D.T.T., Nguyen-Xuan H. and Lee J. (2020): Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach.– Applied Mathematical Modelling, vol.87, pp.501-533, 10.1016/j.apm.2020.06.002.
 
27.
Truong T.T., Lee J. and Nguyen-Thoi T. (2021): Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm.– Structural Multidisciplinary Optimization, vol.63, No.6, pp.2889-2918, 10.1007/s00158-021-02852-z.
 
28.
Ootao Y., Kawamura R., Tanigawa Y. and Nakamura, T. (1998): Neural network optimization of material composition of a functionally graded material plate at arbitrary temperature range and temperature rise.– Archive of Applied Mechanics, vol.68, No.10, pp.662-676, 10.1007/s004190050195.
 
29.
Ootao Y., Tanigawa Y. and Nakamura T. (1999): Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach.– Composites Part B, vol.30, No.4, pp.415-422, 10.1016/S1359-8368(99)00003-7.
 
30.
Ootao Y., Kawamura R., Tanigawa Y. and Imamura R. (1999): Optimization of material composition of nonhomogeneous hollow sphere for thermal stress relaxation making use of neural network.– Computer Methods Applied Mech. Eng., vol.180, No.1, pp.185-201, 10.1016/S0045-7825(99)00055-9.
 
31.
Ootao Y., Kawamura R., Tanigawa Y. and Imamura R. (1999): Optimization of material composition of nonhomogeneous hollow circular cylinder for thermal stress relaxation making use of neural network.– J. Thermal Stresses, vol.22, No.1, pp.1-22, 10.1080/014957399281020.
 
32.
Eldeeb A., Shabana Y. and Elsawaf A. (2021): Thermo-elastoplastic behavior of a rotating sandwich disc made of temperature-dependent functionally graded materials.– J. Sandwich Structures Materials, vol.23, No.5, pp.1761-1783, 10.1177/1099636220904970.
 
33.
Fathi R., Wei H., Saleh B., Radhika N., Jiang J., Ma A., Ahmed M.H., Li Q. and Ostrikov K.K. (2022): Past and present of functionally graded coatings: Advancements and future challenges.– Applied Materials Today, vol.26, pp.101373, 10.1016/j.apmt.2022.101373.
 
34.
Cho J.R. and Ha D.Y. (2002): Volume fraction optimization for minimizing thermal stress in Ni–Al2O3 functionally graded materials.– Materials Science Eng. A, vol.334, No.1, pp.147-155, 10.1016/S0921-5093(01)01791-9.
 
35.
Sugano Y. (1987): An expression for transient thermal stress in a nonhomogeneous plate with temperature variation through thickness.– Ing. Arch., vol.57, No.2, pp.147-156, 10.1007/BF00541388.
 
36.
Bergstra J., Bardenet R., Bengio Y. and Kégl B. (2011): Algorithms for hyper-parameter optimization.– In the 24th Int. Conf. Neural Information Processing Systems. (NY, USA: Curran Assosiates Inc.), pp.2546-2554.
 
37.
Akiba T., Sano S., Yanase T., Ohta T. and Koyama, M. (2019): Optuna: a next-generation hyperparameter optimization framework.– In the 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining. (Anchorage, USA), pp.2623-2631.
 
38.
Tanaka M., Hanahara K. and Seguchi, Y. (1992): Configuration control of the truss-type parallel manipulator by the modular neural network model.– JSME Int. J. Series 3, vol.35, No.1, pp.89-95, 10.1299/jsmec1988.35.89.
 
39.
Cho J.R. and Ha D.Y. (2001): Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials.– Materials Science Eng. A, vol.302, No.2, pp.187-196, 10.1016/S0921-5093(00)01835-9.
 
40.
Zhang X.C., Xu B.S., Wang H.D., Jiang Y. and Wu Y.X. (2006): Modeling of thermal residual stresses in multilayer coatings with graded properties and compositions.– Thin Solid Films, vol.497, No.1-2, pp.223-231, 10.1016/j.tsf.2005.09.184.
 
41.
Awaji H., Takenaka H., Honda S. and Nishikawa T. (2001): Temperature/stress distributions in a stress-relief-type plate of functionally graded materials under thermal shock.– JSME Int. J. Series A, vol.44, No.1, pp.37-44, 10.1299/jsmea.44.37.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top