ORIGINAL PAPER
Performance of Four Different Nanoparticles in Boundary Layer Flow Over a Stretching Sheet in Porous Medium Driven by Buoyancy Force
 
More details
Hide details
1
Department of Mathematics, Faculty of Engineering, CHRIST Bengaluru- 560074, Karnataka, India
 
2
Department of Mathematics, BMS College of Engineering, Bengaluru- 560019, Karnataka, India
 
3
Department of Studies and Research in Mathematics, Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, India
 
 
Online publication date: 2020-06-05
 
 
Publication date: 2020-06-01
 
 
International Journal of Applied Mechanics and Engineering 2020;25(2):1-10
 
KEYWORDS
ABSTRACT
This contemporary work explores the theoretical analysis of energy transfer performance of distinct nanoparticles (silver, copper, aluminium oxide and titanium oxide) adjacent to a moving surface under the influence of a porous medium which is driven by the buoyancy force. A mathematical model is presented which is converted to similarity equations by employing similarity transformation. The condensed nonlinear equations were approximated by the iterative method called RKF 45th-order. The flow and energy transference characteristics are explained through graphs and tabulated values. The notable findings are: silver- water is an appropriate nanofluid for enhancing the thermal conductivity of the base fluid. Titanium oxide – water shows a lower fluid flow movement due to porosity.
 
REFERENCES (43)
1.
Choi S.U.S (1995): Enhancing thermal conductivity of fluids with nanoparticles.− The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, pp.99-105.
 
2.
Masuda H., Ebata A., Teramea K. and Hishinuma N. (1993): Altering the thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. − Netsu Bussei., vol.7, No.4, pp.227-233.
 
3.
Minsta H.A., Roy G., Nguyen C.T. and Doucet D. (2009): New temperature dependent thermal conductivity data for water-based nanofluids. − International Journal of Thermal Sciences. vol.48, pp.363-371.
 
4.
Sakiadis B.C. (1961): Boundary layer behaviour on continuous solid surface; the boundary layer equations for two-dimensional and axisymmetric flow of a dusty fluid. − A.I. Ch. E.J, vol.7, No.1, pp.26-28.
 
5.
Tsou F.K., Sparrow E.M. and Glodstein R.J. (1967): Flow and heat transfer in the boundary layer on a continuous moving surface.− Int. J. Heat Mass Transfer, vol.10, pp.219-235.
 
6.
Crane L.J. (1970): Flow past a stretching plate.− Zeitschrift fur Angewandte Mathematik and Physik ZAMP, vol.21, pp.645-647.
 
7.
Chen C.H. (1998): Laminar mixed convection adjacent to vertical, continuously stretching sheets. − Heat and Mass Transfer, vol.33, pp.471-476.
 
8.
Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. − International Journal of Heat and Mass Transfer, vol.53, pp.2477–2483.
 
9.
Magyari E. and Keller B. (1999): Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. − J. Phys. D: Appl. Phy., vol.32, pp.577-585.
 
10.
Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction. − Archives of Mechanics, vol.53, pp.643-651.
 
11.
Al-Odat R.A.M.Q., Damesh T.A. and Al-Azab T.A. (2010): Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect. − International Journal of Applied Mechanics and Engineering, vol.11, pp.289-299.
 
12.
Partha M.K., Murthy P.V.S.N. and Rajasekhar G.P. (2005): Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. − Heat and Mass Transfer, vol.41, pp.360-366.
 
13.
Sanjayanand E. and Khan S.K. (2006): On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. − International Journal of Thermal Sciences, vol.45, pp.819-828.
 
14.
Khan S.K. (2006): Boundary layer viscoelastic fluid flow over an exponentially stretching sheet. − International Journal of Applied Mechanics and Engineering, vol.11, pp.321-335.
 
15.
Mustafa M., Hayat T., Pop I., Asghar S. and Obaidat S. (2011): Stagnation-point flow of a nanofluid towards a stretching sheet.− International Journal of Heat and Mass Transfer, vol.54, pp.5588-5594.
 
16.
Sharidan S., Mahmood T. and Pop I. (2006): Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet. − Int. J. Appl. Mech. Eng., vol.11, No.3 pp.647-654.
 
17.
Gireesha B.J., Manjunatha S. and Bagewadi C.S. (2012): Unsteady hydromagnetic boundary layer flow and heat transfer of dusty fluid over a stretching sheet. − Afr. Metametika, vol.23, No.2, pp.229-241.
 
18.
Manjunatha S. and Gireesha B.J. (2016): Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. −Ain Shams Engineering Journal, vol.7, pp.505-515.
 
19.
Grubka L.J. and Bobba K.M. (1985): Heat transfer characteristics of a continuous stretching surface with variable temperature. − Int. J. Heat Mass Transfer, vol.107, pp.248-250.
 
20.
Mahapatra T.R. and Gupta A.S. (2003): Heat transfer in stagnation point flow towards a stretching surface. −Heat Mass Transfer, vol.32, pp.517-521.
 
21.
Andersson H.I., Aareseth J.B. and Dandapat B.S. (2000): Heat transfer in a liquid film on an unsteady stretching surface. − Int. J. Heat Mass Transfer, vol.43, pp.69-74.
 
22.
Elbashbeshy E.M.A. and Aldawody D.A. (2010): Effect of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface. − Int. J. Nonlinear Sci., vol.9, No.4, pp.448-454.
 
23.
Gireesha B.J., Mahanthesh B., Gorla R.S.R. and Manjunatha P.T.(2016): Thermal radiation and hall effects on boundary layer flow past a non isothermal stretching surface embedded in porous medium with non uniform heat source/sink and fluid particle suspension. − Heat Mass Transfer, vol.52, No.4, pp.897-911.
 
24.
Krishnamurthya M.R., Prasanna Kumara B.C., Gireeshaa B.J. and Gorla R.S.R. (2016): Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. − Engineering Science and Technology, an Int. Journal, vol.19, No.1, pp.53-61.
 
25.
Manjunatha S., Gireesha B.J., Eshwarappa K.M. and BagewadiC.S.(2013): Similarity solutions for boundary layer flow of a dusty fluid through a porous medium over a stretching surface with internal heat generation/absorption. − J. of Porous Media, vol.16, pp.501-514.
 
26.
Cheng C-Y. (2006): Natural convection heat and mass transfer of non-Newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes. − Int. Comm. Heat Mass Transfer, vol.33, pp.1156-1164.
 
27.
Chamkha A.J., Al-Mudhaf A.F. and Pop I. (2006): Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. − Int. Comm. Heat Mass Transfer, vol.33, pp.1096-1102.
 
28.
Magyari E., Pop I. and Postelnicu A. (2007): Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium. − Part I. Transp. Porous Media, vol.67, pp.49-67.
 
29.
Nield D.A. and Kuznetsov A.V. (2008): Natural convection about a vertical plate embedded in a bi-disperse porous medium. − Int. J. Heat Mass Transfer, vol.51, pp.1658-1664.
 
30.
MahdyA. and Hady F.M. (2009): Effect of thermophoretic particle deposition in non- Newtonian free convection flow over a vertical plate with magnetic field effect. − J. Non- Newtonian Fluid Mech,. vol.161, pp.37-41.
 
31.
Ibrahim F.S., Hady F.M., Abdel-Gaied S.M. and Eid M.R. (2010): Influence of chemical reaction on heat and mass transfer of non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect.− Appl. Math. Mech. - Engl. Ed. vol.31, No.6, pp.675-684.
 
32.
Prasannakumara B.C., Shashikumar N.S. and Venkatesh P. (2017): Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. − Nonlinear Engineering, vol.6, No.3, pp.179-190.
 
33.
Eid M.R. (2016): Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation. − Journal of Molecular Liquids, vol.220, pp.718-725.
 
34.
Eid M.R., Alsaedi A., Muhammad T. and Hayat T. (2017): Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation. − Results in Physics, vol.7, pp.4388-4393.
 
35.
Eid Mohamed R. (2017): Time-dependent flow of water-NPS over a stretching sheet in a saturated porous medium in the stagnation-point region in the presence of chemical reaction. − Journal of Nanofluids, vol.6, No.3, pp.550-557.
 
36.
Eid Mohamed R. and Mishra S.R. (2017): Exothermically reacting of non-Newtonian fluid flow over a permeable nonlinear stretching vertical surface with heat and mass fluxes. − Computational Thermal Sciences, vol.9, No.4, pp.283-296.
 
37.
Eid Mohamed R., Kasseb L. Mahny, Taseer Muhammad and Mohsen Sheikholeslam (2018): Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. − Results in Physics, vol.8, pp.1185-1193.
 
38.
Al-Hossainy A.F., Eid M.R. and Zoromba M.S. (2019): SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium. − Physica Scripta.
 
39.
Tanzila Hayat and Nadeem S. (2017): Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. − Results in Physics, vol.7, pp.2317-2324.
 
40.
Abolfazl Zaraki, Mohammad Ghalambaz, Ali J. Chamkha, Mehdi Ghalambaz and Danilo De Rossi (2015): Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: Effects of size, shape and type of nanoparticles, type of base fluid and working temperature. − Advanced Powder Technology, vol.26, pp.935-946.
 
41.
Wang C.Y. (1989): Free convection on a vertical stretching surface. − J. Appl. Math. Mech. (ZAMM), vol.69, pp.418-420.
 
42.
Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. − International Journal of Heat and Mass Transfer, vol.53, pp.2477-2483.
 
43.
Gorla R.S.R. and Sidawi I. (1994): Free convection on a vertical stretching surface with suction and blowing. − Appl. Sci. Res. vol.52, pp.247-257.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top