ORIGINAL PAPER
Plane Waves in Thermo-Viscoelastic Material with Voids Under Different Theories of Thermoelasticity
,
 
,
 
 
 
More details
Hide details
1
Department of Mathematics, Panjab University, Chandigarh - 160 014, India
 
2
Department of Applied Mechanics, BME, Budapest 1111, Hungary
 
 
Online publication date: 2019-08-09
 
 
Publication date: 2019-09-01
 
 
International Journal of Applied Mechanics and Engineering 2019;24(3):691-708
 
KEYWORDS
ABSTRACT
Propagation of time harmonic plane waves in an infinite thermo-viscoelastic material with voids has been investigated within the context of different theories of thermoelasticity. The equations of motion developed by Iesan [1] have been extended to incorporate the Lord-Shulman theory (LST) and Green-Lindsay theory (GLT) of thermoelasticity. It has been shown that there exist three coupled dilatational waves and an uncoupled shear wave propagating with distinct speeds. The presence of thermal, viscosity and voids parameters is responsible for the coupling among dilatational waves. All the existing waves are found to be dispersive and attenuated in nature. The phase speeds and attenuation coefficients of propagating waves are computed numerically for a copper material and compared under different theories of thermo-elasticity. The expressions of energies carried along each wave have also been derived. All the computed numerical results have been depicted through graphs. It is found that the influence of CT and GLT is almost same on wave propagation, while LST influences the wave propagation differently.
 
REFERENCES (42)
1.
Iesan D. (2011): On a theory of thermoelastic materials with voids. – J. Elasticity, vol.104, pp.369-384.
 
2.
Biot M.A. (1965): Mechanics of Incremental Deformations. – New York.
 
3.
Szekeres A. (1980): Equation system of thermoelasticity using the modified law of thermal conductivity. – Periodica Polytechnica, Mech. Engng., vol.24, No.3, pp.253-261.
 
4.
Farkas I. and Szekeres A. (1984): Application of the modified law of heat conduction and state equation to dynamical problems of thermoelasticity. – Periodica Polytechnica, Mech. Engng., vol.28, No.2-3, pp.163-170.
 
5.
Chandrasekhariah D.S. (1998): Hyperbolic thermoelasticity: A review of recent literature. – Appl. Mech. Rev., vol.51, No.12, pp.705-729.
 
6.
Szekeres A. and Szalontay M. (1980): Experiments on thermal shock of long rods. – Periodica Polytechnica, Mech. Engng., vol.24, No.3, pp.243-252.
 
7.
Hetnarski R.B. and Ignaczak J. (1999): Generalized Thermoelasticity. – J. Therm. Stresses, vol.22, pp.451-476.
 
8.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. – J. Mech. Phys. Solid., vol.15, pp.299-309.
 
9.
Green A.E. and Lindsay A. (1972): Thermoelasticity. – J. Elasticity, vol.2, pp.1-7.
 
10.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. – J. Elasticity, vol.31, pp.189-208.
 
11.
Tzou D.Y. (1995): A unified approach for heat conduction from macro to micro-scales. – J. Heat Trans., vol.117, pp.8-16.
 
12.
Goodman M.A. and Cowin S.C. (1972): A continuum theory for granular materials. – Arch. Ration. Mech. Anal., vol.44, No.4, pp.249-266.
 
13.
Nunziato J.W. and Cowin S.C. (1979): A nonlinear theory of elastic materials with voids. – Arch. Ration. Mech. Anal., vol.72, No.2, pp.175-201.
 
14.
Cowin S.C. and Nunziato J.W. (1983): Linear elastic materials with voids. – J. Elasticity, vol.13, No.2, pp.125-147.
 
15.
Puri P. and Cowin S.C. (1985): Plane waves in linear elastic material with voids. – J. Elasticity, vol.15, No.2, pp.167-183.
 
16.
Iesan D. (1985): Some theorems in the theory of elastic materials with voids. – J. Elasticity, vol.15, No.2, pp.215-224.
 
17.
Chandrasekharaiah D.S. (1986): Thermoelasticity with second sound - a review. – Appl. Mech. Rev., vol.39, pp.354-376.
 
18.
Chandrasekharaiah D.S. (1987): Rayleigh Lamb waves in an elastic plate with voids. – J. Appl. Mech., vol.54, pp.509-512.
 
19.
Marin M. (1998): Contributions on the uniqueness in thermoelasto-dynamics on bodies with voids. – Cienc. Math. (Havana), vol.16, No.2, pp.101-109.
 
20.
Birsan M. (2000): Existence and uniqueness of weak solutions in the linear theory of elastic shells with voids. – Libertas Mathematica, vol.20, pp.95-105.
 
21.
Chirita S. and Scalia A. (2001): On the spatial and temporal behaviour in linear thermoelasticity of materials with voids. – J. Therm. Stresses, vol.24, No.5, pp.433-455.
 
22.
Cicco S.D. and Diaco M. (2002): A theory of thermoelastic materials with voids without energy dissipation. – J. Therm. Stresses, vol.25, No.2, pp.493-503.
 
23.
Iesan D. and Nappa L. (2004): Thermal stresses in plane strain of porous elastic bodies. – Meccanica, vol.39, pp.125-138.
 
24.
Iesan D. (2007): Nonlinear plane strain of elastic materials with voids. – Math. Mech. Solid., vol.11, No.4, pp.361-384.
 
25.
Tomar S.K. (2005): Wave propagation in a micropolar elastic plate with voids. – J. Vibr. Cont., vol.11, No.6, pp.849-863.
 
26.
Ciarletta M., Straughan B. and Zampoli V. (2007): Thermo-poroacoustic acceleration waves in elastic materials with voids without energy dissipation. – Int. J. Engng. Sci., vol.45, No.9, pp.736-743.
 
27.
Ciarletta M., Svanadze M. and Buonanno L. (2009): Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids. – Eur. J. Mech. A/Solids, vol.28, No.4, pp.897-903.
 
28.
Svanadze M.M. (2014): Potential method in the linear theory of viscoelastic materials with voids. – J. Elasticity, vol.114, pp.101-126.
 
29.
Chirita S. and Danescu A. (2015): Surface waves in a thermo-viscoelastic porous half-space. – Wave Motion, vol.54, pp.100-114.
 
30.
Iesan D. (1986): A theory of thermoelastic materials with voids. – Acta Mechanica, vol.60, No.1-2, pp.67-89.
 
31.
Dhaliwal R.S. and Wang J. (1993): A heat-flux dependent theory of thermoelasticity with voids. – Acta Mechanica, vol.110, No.1-4, pp.33-39.
 
32.
Ciarletta M. and Scalia A. (1993): On the nonlinear theory of nonsimple thermoelastic materials with voids. – J. Appl. Math. Mech., vol.73, No.2, pp.67-75.
 
33.
Ciarletta M. and Scarpetta E. (1995): Some results on thermoelasticity for dielectirc materials with voids. – J. Appl. Math. Mech., vol.75, No.9, pp.707-714.
 
34.
Tomar S.K., Bhagwan J. and Steeb H. (2014): Time harmonic waves in thermo-viscoelastic material with voids. – J. Vibr. Cont., vol.20, pp.1119-1136.
 
35.
Sharma K. and Kumar P. (2013): Propagation of plane waves and fundamental solution in thermoelastic medium with voids. – J. Therm. Stresses, vol.36, pp.94-111.
 
36.
Bucur A.V., Passarella F. and Tibullo V. (2014): Rayleigh surface waves in the theory of therm elastic materials with voids. – Mechanica, vol.49, pp.2069-2078.
 
37.
Bhagwan J. and Tomar S.K. (2016): Reflection and transmission of plane dilatational wave at an interface between an elastic solid and a thermo-viscoelastic solid half-space with voids. – J. Elasticity, vol.121, pp.69-88.
 
38.
D’Apice C. and Chirita S. (2016): Plane harmonic waves in the theory of thermo-viscoelastic materials with voids. – J. Therm. Stresses, vol.39, pp.142-155.
 
39.
Santra S., Lahiri A. and Das N.C. (2016): Reflection and refraction of generalized visco-thermoelastic waves at an interface between two half spaces. – Comput. Appl. Math. J., vol.2, No.1, pp.12-22.
 
40.
Achenbach J.D. (1973): Wave Propagation in Elastic Solids. – North Holland.
 
41.
Borchardt R.D. (2009): Viscoelastic Waves in Layered Media. – UK: Cambridge University Press.
 
42.
Mukhopadhyay S. (2000): Effect of thermal relaxation on thermo-viscoelastic interactions in an unbounded body with spherical cavity subjected to periodic loading on the boundary. – J. Therm. Stresses, vol.23, pp.675-684.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top