ORIGINAL PAPER
Planning of Collision-Free Trajectory for Mobile Manipulators
 
 
 
More details
Hide details
1
University of Zielona Góra Institute of Computer Science and Production Management Licealna 9, 65-417 Zielona Góra, POLAND
 
 
Online publication date: 2013-06-08
 
 
Publication date: 2013-06-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(2):475-489
 
KEYWORDS
ABSTRACT
A method of planning sub-optimal trajectory for a mobile manipulator working in the environment including obstacles is presented. The path of the end-effector is defined as a curve that can be parameterized by any scaling parameter, the reference trajectory of a mobile platform is not needed. Constraints connected with the existence of mechanical limits for a given manipulator configuration, collision avoidance conditions and control constraints are considered. The motion of the mobile manipulator is planned in order to maximize the manipulability measure, thus to avoid manipulator singularities. The method is based on a penalty function approach and a redundancy resolution at the acceleration level. A computer example involving a mobile manipulator consisting of a nonholonomic platform and a SCARA type holonomic manipulator operating in a two-dimensional task space is also presented.
REFERENCES (13)
1.
An C.H., Atkeson C.G. and Hollerbach J.M. (1988): Model-based control of a robot manipulator. - Cambridge: Mit Press.
 
2.
Fiacco A.V. and McCormick G.P. (1968): Nonlinear Programming: Sequential Unconstrained Minimization Techniques. - John Wiley & Sons, New York.
 
3.
Findeisen W., Szymanowski J. and Wierzbicki A. (1977): Theory and Methods of Optimization (in Polish). - Polish Scientific Publisher, Warsaw.
 
4.
Galicki M. (1998): The planning of robotic optimal motions in the presence of obstacles. - Int. J. Rob. Res., vol.17, No.3, pp.248-259.
 
5.
Galicki M. (2011a): Task space control of mobile manipulators. - Robotica, vol.29, pp.221-232.
 
6.
Galicki M. (2011b): Collision-free control of mobile manipulators in a task space. - Mech. Syst. Sig. Proc., vol.25, No.7, pp.2766-2784.
 
7.
Galicki M. (2012): Two-stage constrained control of mobile manipulators. - Mechanism and Machine Theory, vol.54, pp.18-40.
 
8.
Mazur A. (2007): Path following for nonholonomic mobile manipulators. - Rob. Motion and Control, LNCIS 360, pp.279-292.
 
9.
Mazur A. (2010): Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators. - Robotica, vol.28, pp.57-68.
 
10.
Pająk G. and Galicki, M. (2000): Collision-free trajectory planning of the redundant manipulators. - Proc. of the Methods and Models in Autom. and Rob., vol.2, pp.605-610. Pająk G. and Pająk I. (2009): Sub-optimal trajectory planning of the redundant manipulators. - Int. J. Appl. Mech. Eng., vol.14, No.1, pp.251-260.
 
11.
Pająk G. and Pająk I. (1997): Planning of an optimal trajectory of redundant manipulator with regard to constraints on control. - Arch. Mech. Eng., vol.44, No.1, pp.5-20.
 
12.
Pająk I. and Galicki M. (1999): The planning of suboptimal collision-free robotic motions. - In: Proc. of the Rob. Motion and Control, pp.229-243.
 
13.
Renders J.M., Rossignol E., Becquet M. and Hanus R. (1991): Kinematic calibration and geometrical parameter identification for robots. - IEEE Trans. Rob. Autom., vol.7, No.6, pp.721-731.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top