ORIGINAL PAPER
Pressure Distribution in a Squeeze Film Spherical Bearing with Rough Surfaces Lubricated by an Ellis Fluid
,
 
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 2, P.O.Box 47, 65-516 Zielona Góra, Poland
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):593-610
 
KEYWORDS
ABSTRACT
In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen’s stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.
 
REFERENCES (76)
1.
Covey G.H. and Stanmore B.R. (1981): Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. – J. Non-Newton. Fluid Mech. vol.8, pp.249–260.
 
2.
Covey G.H., Stanmore B.R. (1981). Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress J. Non-Newton. Fluid Mech. 8: 249-260.
 
3.
Dai G. and Bird R.B. (1981): Radial flow of Bingham fluid between two fixed circular disks. – J. Non-Newton. Fluid Mech. vol.8, pp.349–355.
 
4.
Dai G., Bird R.B. (1981). Radial flow of Bingham fluid between two fixed circular disks J. Non-Newton. Fluid Mech. 8: 349-355.
 
5.
Lipscomb C.C. and Denn M.M. (1984): Flow of Bingham fluids in complex geometries. – J. Non-Newt. Fluid Mech., vol.14, No.3, pp.337-349.
 
6.
Lipscomb C.C., Denn M.M. (1984). Flow of Bingham fluids in complex geometries J. Non-Newt. Fluid Mech. 14 (3): 337-349.
 
7.
Walicki E. and Walicka A. (1998): Mathematical modelling of some biological bearings. – Smart Materials and Structures, Proc. 4th European and 2 nd MiMR Conference, Harrogate, UK, 6-8 July 1998, pp.519-525.
 
8.
Walicki E. Walicka A. 1998 Mathematical modelling of some biological bearings Smart Materials and Structures Proc. 4th European and 2nd MiMR Conference Harrogate, UK 6-8 July 1998 519 525.
 
9.
Dorier C. and Tichy J. (1992): Behaviour of a Bingham-like viscous fluid in lubrication flows. – J. Non-Newt. Fluid Mech., vol.45, No.3, pp.291-350.
 
10.
Dorier C., Tichy J. (1992). Behaviour of a Bingham-like viscous fluid in lubrication flows J. Non-Newt. Fluid Mech. 45 (3): 291-350.
 
11.
Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants, (Pt 1, Theoretical studies). – Bull. JSME, vol.14, No.69, pp.268-278.
 
12.
Wada S., Hayashi H. (1971). Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants Bull. JSME. 14 (69): 268-278.
 
13.
Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants. (Pt 2, Experimental studies). – Bull. JSME, vol.14, No.69, pp.279-286.
 
14.
Wada S., Hayashi H. (1971). Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants Bull. JSME. 14 (69): 279-286.
 
15.
Swamy S.T.N., Prabhu B.S. and Rao B.V.A. (1975): Stiffness and damping characteristics of finite width journal bearing with a non-Newtonian film and their application to instability prediction. – Wear, vol.32, pp.379-390.
 
16.
Swamy S.T.N., Prabhu B.S., Rao B.V.A. (1975). Stiffness and damping characteristics of finite width journal bearing with a non-Newtonian film and their application to instability prediction Wear. 32: 379-390.
 
17.
Rajalingham C., Rao B.V.A. and Prabu S. (1978): The effect of a non-Newtonian lubricant on piston ring lubrication. – Wear, vol.50, pp.47-57.
 
18.
Rajalingham C., Rao B.V.A., Prabu S. (1978). The effect of a non-Newtonian lubricant on piston ring lubrication Wear. 50: 47-57.
 
19.
Walicka A. (2002): Rotational Flows of Rheologically Complex Fluids in Thin Channels (in Russian). – Zielona Gora: University Press.
 
20.
Walicka A. (2002). Rotational Flows of Rheologically Complex Fluids in Thin Channels. University Press, Zielona Gora. (in Russian).
 
21.
Walicki E. (2005): Rheodynamics of Slide Bearings Lubrication (in Polish). – Zielona Gora: University Press.
 
22.
Walicki E. (2005). Rheodynamics of Slide Bearings Lubrication. University Press, Zielona Gora. (in Polish).
 
23.
Walicka A. (1994): Micropolar Flow in a Slot Between Rotating Surfaces of Revolution. – Zielona Góra: TU Press.
 
24.
Walicka A. (1994). Micropolar Flow in a Slot Between Rotating Surfaces of Revolution. TU Press, Zielona Góra.
 
25.
Khonsari M.M. and Dai F. (1992): On the mixture flow problem in lubrication of hydrodynamic bearing: small solid volume fraction. – STLE Trib. Trans., vol.35, No.1, pp.45-52.
 
26.
Khonsari M.M., Dai F. (1992). On the mixture flow problem in lubrication of hydrodynamic bearing: small solid volume fraction STLE Trib. Trans. 35 (1): 45-52.
 
27.
Agrawal V.K. (1970): Effect of lubricant inertia on squeeze film in spherical bearing. – Jap. J. Appl. Phys., vol.9, No.7, pp.831-833.
 
28.
Agrawal V.K. (1970). Effect of lubricant inertia on squeeze film in spherical bearing Jap. J. Appl. Phys. 9 (7): 831-833.
 
29.
Gould F. (1975): High-pressure spherical squeeze films. – J. Lubric. Technol. Trans. ASME, ser. F, vol.97, No.1, pp.207-208.
 
30.
Gould F. (1975). High-pressure spherical squeeze films J. Lubric. Technol. Trans. ASME, ser. F. 97 (1): 207-208.
 
31.
Murti P.R.K. (1975): Squeeze film in curved circular plates. – J. Lubric. Technol. Trans. AME, ser F, vol.97, No.4, pp.650-654.
 
32.
Murti P.R.K. (1975). Squeeze film in curved circular plates J. Lubric. Technol. Trans. AME, ser F. 97 (4): 650-654.
 
33.
Vora K.H. (1980): Behaviour of squeeze film between curved circular plates with a concentric circular pocket. – Wear, vol.65, pp.35-38.
 
34.
Vora K.H. (1980). Behaviour of squeeze film between curved circular plates with a concentric circular pocket Wear. 65: 35-38.
 
35.
Walicka A. (1989): Accurate and Asymptotic Solution of Simplified Sets of Equations Describing the Motion of Viscous Fluids in a Slot Bounded by Two Co-axial Surfaces of Revolution (in Polish). – Warszawa: PWN.
 
36.
Walicka A. (1989). Accurate and Asymptotic Solution of Simplified Sets of Equations Describing the Motion of Viscous Fluids in a Slot Bounded by Two Co-axial Surfaces of Revolution. PWN, Warszawa. (in Polish).
 
37.
Christensen H. (1970): Stochastic model for hydrodynamic lubrication of rough surfaces. – Proc. Inst. Mech. Engrs, vol.184, pt 1, pp.1013-1022.
 
38.
Christensen H. (1970). Stochastic model for hydrodynamic lubrication of rough surfaces Proc. Inst. Mech. Engrs. 184 (pt 1): 1013-1022.
 
39.
Bujurke N.M., Kudenatti R.B. and Awati V.B. (2007): Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. – Mathematical Biosciences, vol.209, pp.76-89.
 
40.
Bujurke N.M., Kudenatti R.B., Awati V.B. (2007). Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints Mathematical Biosciences. 209: 76-89.
 
41.
Lin J.-R. (2000): Surfaces roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. – Int. J. Machine Tools Manufact., vol.40, pp.1671-1689,.
 
42.
Lin J.-R. (2000). Surfaces roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings Int. J. Machine Tools Manufact. 40: 1671-1689.
 
43.
Lin J.-R. (2001): The effect of couple stresses in the squeeze film behavior between isotropic rough rectangular plates. – Int. J. Appl. Mech. Eng., vol.6, No.4, pp.1007-1024.
 
44.
Lin J.-R. (2001). The effect of couple stresses in the squeeze film behavior between isotropic rough rectangular plates Int. J. Appl. Mech. Eng. 6 (4): 1007-1024.
 
45.
Prakash J. and Tiwari K. (1984): An analysis of the squeeze film between rough porous rectangular plates with arbitrary porous wall thickness. – Journal of Tribology, Trans. ASME, vol.106, No.2, pp.218-222.
 
46.
Prakash J., Tiwari K. (1984). An analysis of the squeeze film between rough porous rectangular plates with arbitrary porous wall thickness Journal of Tribology, Trans. ASME. 106 (2): 218-222.
 
47.
Prakash J. and Tiwari K. (1985): Effects of surface roughness on the squeeze film between rectangular porous annular disc with arbitrary porous wall thickness. – Int. J. Mech. Sci., vol.27, No.3, pp.135-144.
 
48.
Prakash J., Tiwari K. (1985). Effects of surface roughness on the squeeze film between rectangular porous annular disc with arbitrary porous wall thickness Int. J. Mech. Sci. 27 (3): 135-144.
 
49.
Walicka A. (2009): Surface roughness effects in a curvilinear squeeze film bearing lubricated by a power-law fluid. – Int. J. Appl. Mech. Engng, vol.14, No.1, pp.277-293.
 
50.
Walicka A. (2009). Surface roughness effects in a curvilinear squeeze film bearing lubricated by a power-law fluid Int. J. Appl. Mech. Engng. 14 (1): 277-293.
 
51.
Walicka A. (2012): Porous curvilinear squeeze film bearing with rough surfaces lubricated by a power-law fluid. – Journal of Porous Media, vol.15, No.1, pp.29-49.
 
52.
Walicka A. (2012). Porous curvilinear squeeze film bearing with rough surfaces lubricated by a power-law fluid Journal of Porous Media. 15 (1): 29-49.
 
53.
Walicka A. and Walicki E. (2002): Surface roughness effect on the pressure distribution in curvilinear thrust bearings. – Exploitation Problems of Machines, vol.131, No.3, pp.157-167.
 
54.
Walicka A., Walicki E. (2002). Surface roughness effect on the pressure distribution in curvilinear thrust bearings Exploitation Problems of Machines. 131 (3): 157-167.
 
55.
Walicka A. and Walicki E. (2002): Couple stress and surface roughness effects in curvilinear thrust bearings. – Int. J. Appl. Mech. Engng, vol.7, Spec. Issue: SITC, pp.109-117.
 
56.
Walicka A., Walicki E. (2002). Couple stress and surface roughness effects in curvilinear thrust bearings Int. J. Appl. Mech. Engng. 7: 109-117.
 
57.
Gururajan K. and Prakash J. (1999): Surface roughness effects in infinitely long porous journal bearing. – Journal of Tribology, Trans. ASME, vol.121, No.1, pp.139-147.
 
58.
Gururajan K., Prakash J. (1999). Surface roughness effects in infinitely long porous journal bearing Journal of Tribology, Trans. ASME. 121 (1): 139-147.
 
59.
Ellis S.B. (1927): Thesis, Lafayette College, Pa. Citted in: Matsuhisa S., Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the Non-Newtonian Elis fluid. – AiChE Journal, pp.588-595.
 
60.
Ellis S.B. (1927). Thesis, Lafayette College, Pa. Citted in: Matsuhisa S., Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the Non-Newtonian Elis fluid AiChE Journal. : 588-595.
 
61.
Rotem Z. and Shinnar R. (1961): Non-Newtonian flow between parallel boundaries in linear movements. – Chem. Eng. Sie., vol.15, pp.130-143.
 
62.
Rotem Z., Shinnar R. (1961). Non-Newtonian flow between parallel boundaries in linear movements Chem. Eng. Sie. 15: 130-143.
 
63.
Walicka A. (2002a): Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels (in Polish), – Zielona Gora: University Press.
 
64.
Walicka A. (2002a). Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels. University Press, Zielona Gora. (in Polish),.
 
65.
Walicki E. (1977): Viscous Fluid Flow in Slots of Thrust Bearings. – Bydgoszcz: AT-R. Press.
 
66.
Walicki E. (1977). Viscous Fluid Flow in Slots of Thrust Bearings. AT-R. Press, Bydgoszcz.
 
67.
Christensen H. and Tønder K. (1971): The hydrodynamic lubrication of rough bearing surfaces of finite width. – ASME, J. Lubric. Technol., vol.93, No.2, pp.324-330.
 
68.
Christensen H., Tønder K. (1971). The hydrodynamic lubrication of rough bearing surfaces of finite width ASME, J. Lubric. Technol. 93 (2): 324-330.
 
69.
Christensen H. and Tønder K. (1973): The hydrodynamic lubrication of rough journal bearings. – ASME, J. Lubric. Technol., vol.95, No.1, pp.166-172.
 
70.
Christensen H., Tønder K. (1973). The hydrodynamic lubrication of rough journal bearings ASME, J. Lubric. Technol. 95 (1): 166-172.
 
71.
Whorlow R.W. (1992): Rheological Techniques (Sec. Edition). – Ellis Horwood, New York.
 
72.
Whorlow R.W. (1992). Rheological Techniques, Sec. Edition. Ellis Horwood, New York.
 
73.
Walicka, A., Walicki, E. and Ratajczak, M. (1999): Pressure distribution in a curvilinear thrust bearing with pseudo-plastic lubricant. – Appl. Mech. Enging. 4 (sp. Issue), pp.81-88.
 
74.
Walicka A., Walicki E., Ratajczak M. (1999). Pressure distribution in a curvilinear thrust bearing with pseudo-plastic lubricant Appl. Mech. Enging. 4 (sp. Issue): 81-88.
 
75.
Walicka, A., Walicki, E. and Ratajczak, M. (2000): Rotational inertia effects in a pseudo-plastic fluid flow between non-coaxial surfaces of revolution. – Proc. 4th Minsk Int. Heat Mass Transfer Forum (May 22-27, 2000 Minsk Belarus), pp.19-29.
 
76.
Walicka A. Walicki E. Ratajczak M. 2000 Rotational inertia effects in a pseudo-plastic fluid flow between non-coaxial surfaces of revolution Proc. 4th Minsk Int. Heat Mass Transfer Forum May 22-27, 2000 Minsk Belarus 19 29.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top