ORIGINAL PAPER
Probabilistic Mesoscale Analysis of Concrete Beams Subjected to Flexure
 
More details
Hide details
1
Department of Roads and Transportation, University of Al-Qadisiyah, Al Diwaniyah, Iraq
 
2
Department of Civil Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
 
 
Online publication date: 2021-08-26
 
 
Publication date: 2021-09-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(3):12-27
 
KEYWORDS
ABSTRACT
In this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening behavior is defined in terms of fracture mechanics parameters. This damage model is compared with the fixed crack model in macroscale study before using it in the mesoscale model. Then, it is used in the mesoscale model to simulate flexure test and compared to experimental data and shows a good agreement. The probabilistic behavior of the model response is presented through the standard deviation, moment parameters and cumulative probability density functions in different loading stages. It shows variation of the probabilistic characteristics between pre-peak and post-peak behaviour of load-CMOD curves.
 
REFERENCES (41)
1.
Kachanov M. (1980): Continuum model of medium with cracks.– Journal of the engineering Mechanics Division, vol.106, No.3, pp.1039-1051.
 
2.
Belletti B., Cerioni R. and Iori I. (2001): Physical approach for reinforced-concrete (PARC) membrane elements.– Journal of Structural Engineering, vol.127, No.12, pp.1412-1426.
 
3.
Menin R. C.G., Trautwein L.M. and Bittencourt T.N. (2009): Smeared crack models for reinforced concrete beams by finite element method.– IBRACON Structures and Materials Journal, vol.2, No.2, pp.166-200.
 
4.
Al-Jelawy H.M., Mackie K.R. and Haber Z.B. (2018): Shifted plastic hinging for grouted sleeve column connections.– ACI Structural Journal, vol.115, No.4, pp.1101-1114.
 
5.
Al-Jelawy H.M., Mackie K.R. and Haber Z.B. (2018): Experimental and numerical studies on precast bridge columns with shifted plastic hinging.– Eleventh US National Conference on Earthquake Engineering, pp.25-29.
 
6.
Haber Z.B., Mackie K.R. and Al-Jelawy H.M. (2017): Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging.– Journal of Bridge Engineering, vol.22, No.10, pp.04017078.
 
7.
Unger J.F., Eckardt S. and Kooenke C. (2017): A mesoscale model for concrete to simulate mechanical failure.– Computers & Concrete, vol.8, No.4, pp.401-423.
 
8.
Unger J.F. and Eckardt S. (2011): Multiscale modeling of concrete.– Archives of Computational Methods in Engineering, vol.18, No.3, pp.341-393.
 
9.
Häfner S., Eckardt S., Luther T. and Könke C. (2006): Mesoscale modeling of concrete: Geometry and numerics.– Computers & structures, vol.84, No.7, pp.450-461.
 
10.
Zhang Z., Song X., Liu Y., Wu D. and Song C. (2017): Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm.– Composites Science and Technology, vol.149, pp.235-245.
 
11.
Grassl P. and Bažant Z.P. (2009): Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation.– Journal of Engineering Mechanics, vol.135, No.2, pp.85-92.
 
12.
Moës N., Dolbow J. and Belytschko T. (1999): A finite element method for crack growth without remeshing.– International Journal for Numerical Methods in Engineering, vol.46, No.1, pp.131-150.
 
13.
Kim S.M. and Al-Rub R.K. (2011): Meso-scale computational modeling of the plastic-damage response of cementitious composites.– Cement and Concrete Research, vol.41, No.3, pp.339-358.
 
14.
Chen H., Xu B., Mo Y.L. and Zhou T. (2018): Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings.– Construction and Building Materials, vol.178, pp.418-431.
 
15.
Karavelić E., Nikolić M., Ibrahimbegovic A. and Kurtović A. (2019): Concrete meso-scale model with full set of 3D failure modes with random distribution of aggregate and cement phase. Part I: Formulation and numerical implementation.– Computer Methods in Applied Mechanics and Engineering, vol.344, pp.1051-1072.
 
16.
Zhou R. and Lu Y. (2018): A mesoscale interface approach to modelling fractures in concrete for material investigation.– Construction and Building Materials, vol.165, pp.608-620.
 
17.
Niknezhad D., Raghavan B., Bernard F. and Kamali-Bernard S. (2015): The influence of aggregate shape, volume fraction and segregation on the performance of Self-Compacting Concrete: 3D modeling and simulation.– Rencontres Universitaires de Genie Civil.
 
18.
Niknezhad D., Raghavan B., Bernard F. and Kamali-Bernard S. (2015): Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites.– Composites Part B: Engineering, vol.81, pp.72-83.
 
19.
Xie Z.H., Guo Y.C., Yuan Q.Z. and Huang P.Y. (2015): Mesoscopic numerical computation of compressive strength and damage mechanism of rubber concrete.– Advances in Materials Science and Engineering, vol.2015, Article ID 279584, p.10, http://dx.doi.org/10.1155/2015....
 
20.
Eliáš J., Vořechovský M., Skoček J. and Bažant Z.P. (2015): Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data.– Engineering fracture mechanics, vol.135, pp.1-6.
 
21.
Grassl P., Grégoire D., Solano L.R. and Pijaudier-Cabot G. (2012): Meso-scale modelling of the size effect on the fracture process zone of concrete.– International Journal of Solids and Structures, vol.49, No.13, pp.1818-1827.
 
22.
Wang L.C. (2013): Meso-scale numerical modeling of the mechanical behavior of reinforced concrete members.– International Journal of Engineering and Technology, vol.5, No.6, pp.680.
 
23.
Skarżyński Ł. and Tejchman J. (2012): Numerical mesoscopic analysis of fracture in fine-grained concrete.– Archives of Civil Engineering, vol.58, No.3, pp.331-361.
 
24.
Jirásek M. (2000): Comparative study on finite elements with embedded discontinuities.– Computer Methods in Applied Mechanics and Engineering, vol.188, No.1-3, pp.307-330.
 
25.
Rots J.G. (1988): Computational modeling of concrete fracture.– Delft: Technische Hogeschool Delft.
 
26.
Rots J.G. and Blaauwendraad J. (1989): Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?.– HERON, vol.34, No.1.
 
27.
Rots J.G., Nauta P., Kuster G.M. and Blaauwendraad J. (1985): Smeared Crack Approach and Fracture Localization in Concrete.– HERON, vol.30, No.1.
 
28.
Kachanov L. (1986): Introduction to Continuum Damage Mechanics.– Springer Science & Business Media.
 
29.
Lemaitre J. and Chaboche J.L. (1994): Mechanics of Solid Materials.– Cambridge University Press.
 
30.
Kurumatani M., Terada K., Kato J., Kyoya T. and Kashiyama K. (2016): An isotropic damage model based on fracture mechanics for concrete.– Engineering Fracture Mechanics, vol.155, pp.49-66.
 
31.
Mahmoud K.S., Al-Sherrawi M.H. (2002): Nonlinear finite element analysis of composite concrete beams.– Journal of Engineering, Baghdad, Iraq, vol.3, No.8, pp.273-288.
 
32.
Rashid Y.R. (1968): Ultimate strength analysis of prestressed concrete pressure vessels.– Nuclear Engineering and Design, vol.7, No.4, pp.334-344.
 
33.
Eckardt S., Häfner S. and Könke C. (2004): Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale.– Proceedings of ECCOMAS.
 
34.
Sena-Cruz J., Barros J.A. and Azevedo Á.F. (2004): Elasto-Plastic Multi-Fixed Smeared Crack Model for Concrete.– Universidade do Minho, Departamento de Engenharia Civil (DEC).
 
35.
Bažant Z.P. and Lin F.B. (1988): Nonlocal smeared cracking model for concrete fracture.– Journal of structural engineering, vol.114, No.11, pp.2493-2510.
 
36.
Petersson P.E. (1981): Crack Growth And Development Of Fracture Zones In Plain Concrete And Similar Materials.– Lund, Sweden: Lund Institute of Technology.
 
37.
Grégoire D., Rojas-Solano L.B. and Pijaudier-Cabot G. (2013): Failure and size effect for notched and unnotched concrete beams.– International Journal for Numerical and Analytical Methods in Geomechanics, vol.37, No.10, pp.1434-1452.
 
38.
Saliba J., Matallah M., Loukili A., Regoin J.P., Grégoire D., Verdon L. and Pijaudier-Cabot G. (2016): Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modelling.– Engineering Fracture Mechanics. vol.167, pp.123-137.
 
39.
Engwirda D. (2014): Locally-optimal Delaunay-refinement and optimisation-based mesh generation.– School of Mathematics and Statistics, The University of Sydney.
 
40.
Engwirda D. (2005): Unstructured mesh methods for the Navier-Stokes equations.– School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney.
 
41.
Stefanou G. (2009): The stochastic finite element method: past, present and future.– Computer methods in applied mechanics and engineering, vol.198, No.9-12, pp.1031-1051.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top