ORIGINAL PAPER
Projective Synchronization of Chaotic Systems Via Backstepping Design
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Aligunj R.R.B. High School Midnapore (West), West Bengal, INDIA
 
2
Department of Mathematics, Garhbeta Ramsundar Vidyabhavan Garhbeta, Midnapore (West), West Bengal, INDIA
 
 
Online publication date: 2013-09-06
 
 
Publication date: 2013-08-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(3):965-973
 
KEYWORDS
ABSTRACT
Chaos synchronization of discrete dynamical systems is investigated. An algorithm is proposed for projective synchronization of chaotic 2D Duffing map and chaotic Tinkerbell map. The control law was derived from the Lyapunov stability theory. Numerical simulation results are presented to verify the effectiveness of the proposed algorithm
REFERENCES (18)
1.
Blasius, Huppert and Stone (1999): Complex dynamics and phase synchronization in spatially extended ecological systems. - Nature, pp.399.
 
2.
Gonzalez-Miranda J.M. (1998): Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving. - Phys. Rev.E., vol.57, p.7321.
 
3.
Hayes, Grebogi and Ott (1993): Communicating with chaos. - Phys. Rev. Lett., vol.70, pp.30-31.
 
4.
Khan M.A. and Mandal A.K. (2009): Generalized chaos synchronization of coupled Rossler system. - Bull. Cal. Math. Soc. vol.101, No.2, pp.197-204.
 
5.
Khan M.A., Mandal A.K. and Poria S. (2011): Three control strategy for unified chaotic system. - Int. J. of Applied Mechanics and Engineering, vol.16, No.2, pp.597-608.
 
6.
Khan M.A., Pal S.N. and Poria S. (2012): Generalized anti-synchronization of different chaotic systems. - Int. J. of Applied Mechanics and Engineering , vol.17, No.1, pp.83-89.
 
7.
Laoye, Vincent and Kareem (2009): Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller. - Chaos, Solitons and Fractals, vol.39, No.1, pp.356-362.
 
8.
Mainieri R. and Rehacek J. (1999): Projective synchronization in three-dimensional chaotic system. - Phys. Rev. Lett. vol.82, No.15, p.3042.
 
9.
Parlitz, Junge and Kocarev (1996): Synchronization-based parameter estimation from time series. - Phys. Rev. E., vol.54, pp.62-53.
 
10.
Pecora and Carroll (1990): Synchronization in chaotic systems. - Phy. Rev. Lett., vol.64, No.8, pp.821-824.
 
11.
Poria S. (2007): The linear generalized chaos synchronization and predictability. - Int. J. of Applied Mechanics and Engineering , vol.12, No.3, pp.879-885.
 
12.
Rosenblum M., Pikovosky A. and Kurths J. (1996): Phase synchronization of chaotic oscillators. - Phys. Rev. Lett., vol.76, p.1804.
 
13.
Rulkov N.F., Suschik M.M. and Tsimring L.S. (1995): Generalized synchronization of chaos in directionally coupled chaotic systems. - Phys. Rev.E., vol.51, p.980.
 
14.
Tan, Zhang and Yang (2003): Synchronizing chaotic systems using backstepping design. - Chaos, Solitons and Fractals, vol.16, pp.37.
 
15.
Tarai A., Poria S. and Chatterjee P. (2009): Synchronization of bi-directionally coupled chaotic Chen’s system with delay - Chaos, Solitons and Fractals, vol.40, pp.885-892.
 
16.
Tarai A., Poria S. and Chatterjee P. (2007): Synchronization of bi-directionally coupled chaotic Chen’s system with delay - Chaos, Solitons and Fractals, doi.10.1016/j.chaos 2007.11.025.
 
17.
Wang C. and Ge S.S. (2001): Adaptive synchronization of uncertain chaotic systems via backstepping design. - Chaos, Solitons and Fractals, vol.12, pp.1199-1206.
 
18.
Yongguang Y. and Suochun Z. (2003): Controlling uncertain Lu system using backstepping design. - Chaos, Solitons and Fractals, vol.15, pp.897-902.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top