ORIGINAL PAPER
Propagation of SH waves in an regular non homogeneous monoclinic crustal layer lying over a non-homogeneous semi-infinite medium
,
 
 
 
 
More details
Hide details
1
Govt. Polytechnic, Faculty of Science, Jalandhar, INDIA
 
2
Sant Baba Bhag Singh University, Faculty of Science, Jalandhar, INDIA
 
 
Online publication date: 2016-05-28
 
 
Publication date: 2016-05-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(2):447-459
 
KEYWORDS
ABSTRACT
The present paper discusses the dispersion equation for SH waves in a non-homogeneous monoclinic layer over a semi infinite isotropic medium. The wave velocity equation has been obtained. In the isotropic case, when non-homogeneity is absent, the dispersion equation reduces to the standard SH wave equation. The dispersion curves are depicted by means of graphs for different values of non-homogeneity parameters for the layer and semi-infinite medium.
REFERENCES (22)
1.
Stoneley R. (1924): Elastic waves at the surface of separation of two solids. – Proc. R. Soc. A 806. pp.416-428.
 
2.
Bullen K.E. (1965): Theory of Seismology. – Cambridge University Press.
 
3.
Ewing W.M., Jardetzky W.S. and Press F. (1957): Elastic waves in layered media. – New York: McGraw-Hill.
 
4.
Hunter S.C. (1970): Viscoelastic waves, Progress in Solid Mechanics, I. - (ed: Sneddon IN and Hill R) Cambridge University Press.
 
5.
Jeffreys H. (1970): The Earth. – Cambridge University Press.
 
6.
Sezawa K. (1927): Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces. – Bull. Earthq. Res. Inst. Tokyo, 3. pp.1-18.
 
7.
Thomson W. (1950): Transmission of elastic waves through a stratified solid medium. – J. Appl. Phys., vol.21, pp.89–93.
 
8.
Haskell N.A. (1953): The dispersion of surface waves in multilayered media. – Bull. Seis. Soc. Amer., vol.43, pp.17-34.
 
9.
Biot M.A. (1965): Mechanics of Incremental Deformations. – J. Willy.
 
10.
Sinha N. (1967): Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two semi-infinite isotropic media. – Pure Applied Geophysics, vol.67. pp.65-70.
 
11.
Roy P.P. (1984): Wave propagation in a thin two layered medium with stress couples under initial stresses. – Acta Mechanics, vol.54, pp.1-21.
 
12.
Datta B.K. (1986): Some observation on interactions of Rayleigh waves in an elastic solid medium with the gravity field. – Rev. Roumaine Sci. Tech. Ser. Mec. Appl., vol.31. pp.369-374.
 
13.
Chattopadhyay A., Chakraborty M. and Pal A.K. (1983): Effects of irregularity on the propagation of guided SH waves. – Jr. de Mecanique Theo. et appl, vol.2, No.2. pp.215-225.
 
14.
Goda M.A. (1992): The effect of inhomogeneity and anisotropy on Stoneley waves. – Acta Mech., vol.93, No.1-4. pp.89-98.
 
15.
Gupta S., Vishwakarma S.K., Majhi D.K. and Kundu S. (2012): Influence of linearly varying density and rigidity on torsional waves in inhomogeneous crustal layer. – Appl. Math. Mech.-Engl. Ed., vol.33, No.10, pp.1239-1252.
 
16.
Chattopadhyay A., Gupta S., Singh A.K. and Sahu S.A. (2009): Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. – International Journal of Engineering, Science and Technology, vol.1, No.1, pp.228–244.
 
17.
Chattopadhyay A., Gupta S., Sahu S.A. and Singh A.K. (2010): Dispersion of shear waves in an irregular magnetoelastic self-reinforced layer sandwiched between two isotropic half-spaces. – International Journal of Theoretical and Applied Mechanics, vol.5, No.1, pp.27-45.
 
18.
Chattopadhyay A., Gupta S., Singh A.K. and Sahu S.A. (2010): Propagation of SH waves in an irregular non-homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium. – Applied Mathematical Sciences, vol.4, No.44, pp.2157-2170.
 
19.
Sethi M., Gupta K.C., Rani M. and Vasudeva A. (2013): Surface waves in homogeneous viscoelastic media of higher order under the influence of surface stresses. – J. Mech. Behav. Mater., vol.22, No.5-6, pp.185–191.
 
20.
Graff K.F. (1991): Wave Motion Elastic Solids. (Oxford Engineering Science Series), Dover Publications, New ed.
 
21.
Gubbins D. (1990): Seismology and Plate Tectonics. – Cambridge: Cambridge University Press.
 
22.
Tierstein H.F. (1969): Linear Piezoelectric Plate Vibrations. – New York: Plenum Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top