ORIGINAL PAPER
Propagation of Torsional Surface Waves in a Nonhomogeneous Half-Space With Circular Irregularity in Free Surface
,
 
,
 
 
 
 
More details
Hide details
1
Govt. Polytechnic, Faculty of Science, Jalandhar, India
 
2
Chandigarh Engg. College, Faculty of Applied Sciences, Chandigarh, India
 
3
NIPER, Deputy Registrar, U.P. India
 
 
Online publication date: 2018-11-21
 
 
Publication date: 2018-11-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(4):929-939
 
KEYWORDS
ABSTRACT
The present paper studies the effect of circular regularity on propagation of torsional surface waves in an elastic non-homogeneous half-space. Both rigidity and density of the half-space are assumed to vary inversely linearly with depth. Separation of variable method has been used to get the analytical solutions for the dispersion equation of the torsional surface waves. Also, the effects of non-homogeneity and irregularity on the phase velocity of torsional surface waves have shown graphically.
 
REFERENCES (24)
1.
Stoneley R. (1924): Waves at the surface of separation of two solids. – Proc. R. Soc. A 806. pp.416-428.
 
2.
Bullen K.E. (1965). Theory of Seismology. – Cambridge University Press.
 
3.
Ewing W.M., Jardetzky W.S. and Press F. (1957): Elastic Waves in Layered Media. – New York: McGraw-Hill.
 
4.
Hunter S.C. (1970). Viscoelastic Waves. – Progress in Solid Mechanics, I. (ed: Sneddon IN and Hill R) Cambridge University Press.
 
5.
Jeffreys H. (1970): The Earth. – Cambridge University Press.
 
6.
Sezawa K. (1927): Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces. – Bull. Earthq. Res. Inst. Tokyo, vol.3. pp.1-18.
 
7.
Thomson W. (1950): Transmission of elastic waves through a stratified solid medium. – J. Appl. Phys., vol.21, pp.89-93.
 
8.
Haskell N.A. (1953): The dispersion of surface waves in multilayered media. – Bull. Seis. Soc. Amer., vol.43. pp.17-34.
 
9.
Biot M.A. (1965): Mechanics of Incremental Deformations. – J. Willy.
 
10.
Sinha N (1967): Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two semi-infinite isotropic media. – Pure Applied Geophysics, vol.67. pp.65-70.
 
11.
Roy P.P. (1984): Wave propagation in a thin two layered medium with stress couples under initial stresses. – Acta Mechanics, vol.54, pp.1-21.
 
12.
Datta B.K. (1986): Some observation on interactions of Rayleigh waves in an elastic solid medium with the gravity field. – Rev. Roumaine Sci. Tech. Ser. Mec. Appl., vol.31. pp.369-374.
 
13.
Chattopadhyay A., Chakraborty M. and Pal A.K. (1983): Effects of irregularity on the propagation of guided SH waves. – Jr. de Mecanique Theo. et Appl., vol.2, No.2. pp.215-225.
 
14.
Goda M.A. (1992): The effect of inhomogeneity and anisotropy on Stoneley waves. – Acta Mech., vol.93, No.1-4. pp.89-98.
 
15.
Gupta S., Vishwakarma S.K., Majhi D.K. and Kundu S. (2012): Influence of linearly varying density and rigidity on torsional waves in inhomogeneous crustal layer. – Appl. Math. Mech.-Engl. Ed., vol.33, No.10, pp.1239-1252.
 
16.
Georgiadis H.G., Vardaulakis I. and lykotrafitis G. (2000): Torsional surface wave in gradient-elastic half-space. – Wave Motion, vol.31, No.4, pp.333-348.
 
17.
Dey S. and Sarkar M.G. (2002): Torsional surface waves in an initially stressed anisotropic porous medium. – J. Eng. Mech., vol.128, No.2, pp.184-189.
 
18.
Selim M.M. (2007): Propagation of torsional surface wave in heterogeneous half-space with irregular free surface. – Appl. Math. Sci., vol.1, No.29–32, pp.1429-1437.
 
19.
Ozturk A. and Akbbarov S.D. (2009): Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium. – Appl. Math. Model., vol.33, pp.3636-3649.
 
20.
Gupta S., Majhi D.K., Kundu S. and Vishwakarma S.K. (2012): Propagation of torsional surface waves in a homogeneous layer of finite thickness over an initially stressed heterogeneous half-space. – Appl. Math. Comput., vol.218, pp.5655-5664.
 
21.
Davini C., Paroni R. and Puntle E. (2008): An asymptotic approach to the torsional problem in thin rectangular domains. – Meccanica, vol.43, No.4, pp.429-435.
 
22.
Dey S., Gupta S., Gupta A.K., Kar S.K. and De P.K. (2003): Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. – Tamkang J. Sci. Eng., vol.6, No.4, pp.241-249.
 
23.
Sethi M., Gupta K.C., Rani M. and Vasudeva A. (2013): Surface waves in homogeneous viscoelastic media of higher order under the influence of surface stresses. – J. Mech. Behav. Mater., vol.22, No.5-6, pp.185-191.
 
24.
Whittaker E.T. and Watson G.N. (1990): A Course in Modern Analysis. – 4 th edn, Cambridge: Cambridge University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top