ORIGINAL PAPER
Rayleigh wave propagation in isotropic sandy layer sliding over isotropic sandy semi-infinite medium with sliding contact
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Chaudhary Bansi Lal University, Bhiwani-127021, INDIA
 
 
Publication date: 2023-03-01
 
 
Corresponding author
Naveen Kumar
nkjangra521@gmail.com
 
 
International Journal of Applied Mechanics and Engineering 2023;28(1):58-70
 
KEYWORDS
ABSTRACT
The present study aims to investigate Rayleigh wave propagation in an isotropic sandy layer overlying an isotropic sandy semi-infinite medium, with interface considered to be imperfect (slide contact and dislocation like model). Expressions for displacement components are obtained using the variable separation method. The dispersion frequency equation for the Rayleigh wave propagating in sandy media is derived using suitable boundary conditions. Particular cases, such as when the interface is in smooth contact and when sandy media are replaced by elastic media, are also discussed. Using MATLAB software, the effects of the imperfectness parameter (slide contact and dislocation like model) and sandy parameter on the Rayleigh waves’ phase velocity are investigated and compared with the already obtained results of the dislocation like model. The present study may find useful applications in geophysics, civil engineering and soil mechanics.
REFERENCES (24)
1.
Rayleigh L. (1885): On waves propagated along the plane surface of an elastic solid.– Pro. of the London Mathematical Society, vol.1, pp.4-11.
 
2.
Bromwich T.J. (1898): On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe.– Pro. of the London Mathematical Society, vol.1, pp.98-120.
 
3.
Weiskopf W.H. (1945): Stresses in soils under foundation.– J. Franklin Inst., vol.239, pp.445-465.
 
4.
Kar B.K., Pal A.K. and Kalyani V.K. (1986): Propagation of Love waves in an irregular dry sandy layer.– Acta Geophysica Polonica, vol.34, pp.157-170.
 
5.
Abd-Alla A. (1999): Propagation of Rayleigh waves in an elastic half-space of orthotropic material.– Applied Mathematics and Computation, vol.99, pp.61-69.
 
6.
Kuznetsov S.V. (2004): Love waves in stratified monoclinic media.– Quarterly of Appl. Math., vol.62, No.4, pp.749-766.
 
7.
Abd-Alla A., Hammad H. and Abo-Dahab S. (2004): Rayleigh waves in a magnetoelastic half-space of orthotropic material under influence of initial stress and gravity field.– Appl. Math. Comput., vol.154, No.2, pp.583-597.
 
8.
Vishwakarma S.K. and Gupta S. (2014): Rayleigh wave propagation: a case wise study in a layer over a half space under the effect of rigid boundary.– Arch. Civil Mech. Eng., vol.14, No.1, pp.181-189.
 
9.
Pal P.C., Kumar S. and Bose S. (2015): Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium.– Ain Shams Engineering Journal, vol.6, pp.621-627.
 
10.
Sahu S.A., Chaudhary S., Saroj P.K. and Chattopadhyay A. (2017): Rayleigh waves in liquid layer resting over an initially stressed orthotropic half-space under self-weight.– Arabian Journal of Geosciences, vol.10, No.5, p.14, DOI 10.1007/s12517-017-2924-1.
 
11.
Kuznetsov S.V. (2020): Stoneley waves at the generalized Wiechert condition.– Z. Angew. Math. Phys., vol.71, No.180, p.9, https://doi.org/10.1007/s00033....
 
12.
Mandi A., Kundu S., Pati P. and Pal P.C. (2020): An analytical study on the Rayleigh wave generation in a stratified structure.– Applied Mathematics and Mechanics (English Edition).
 
13.
Kuznetsov S.V. (2021): Weiskopf model for sandy materials: Rayleigh - Lamb wave dispersion.– Mechanics of Advanced Materials and Structures, vol.29, No.25. pp.3815-3820.
 
14.
Kuznetsov S.V. (2021): Dispersion of guided waves in stratified medium with a sandy layer.– Waves in Random and Complex Media.
 
15.
Hua L., Jia-ling Y. and Kai-Xin L. (2006): Love waves in layered graded composite structures with imperfectly bonded interface.– Chin. J. Aeronaut., vol.20, No.3, pp.210-214.
 
16.
Vinh P.C. and Anh V.T.N. (2014): Rayleigh waves in an orthotropic half-space coated by a thin orthotropic layer with sliding contact.– International Journal of Engineering Science, vol.75, pp.154-164.
 
17.
Kaur N. (2020): Propagation of Rayleigh waves in layered elastic half-space with finite sliding contact.– Appl. Math. Inf. Sci., vol.14, No.6, pp.995-1004.
 
18.
Vishwakarma S.K. and Runzhang X. (2016): Rayleigh wave dispersion in an irregular sandy Earth’s crust over orthotropic mantle.– Appl. Mathematical Modelling, vol.40, pp.8647-8659.
 
19.
Sharma V. and Kumar S. (2017): Dispersion of SH waves in a viscoelastic layer imperfectly bonded with a couple stress substrate.– J. Theor. App. Mech-Pol., vol.55, No.2, pp.535-546.
 
20.
Kumar R., Singh K. and Pathania D.S. (2019): Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space.– Struct. Eng. Mech., vol.69, No.2, pp.121-129.
 
21.
Kumar N. and Madan D.K. (2021): Propagation of Love waves in dry sandy medium laying over orthotropic semi-infinite medium with imperfect interface.– Int. Jour. Grid and Distributed Computing, vol.14, No.1, pp.2057-2064.
 
22.
Madan D.K., Rani A. and Punia M.(2021:) A note on the effect of rigidity and initial stress on the propagation of Rayleigh waves in pre stressed orthotropic elastic layered medium.– Pro. of the Ind. Nat. Sci. Acad., vol.87, pp.487-498.
 
23.
Biot M.A. (1965): Mechanics of Incremental Deformations.– New York: John Wiley and Sons.
 
24.
Gubbins D. (1990): Seismology and Plate Tectonics.– London: Cambridge University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top