ORIGINAL PAPER
Response Due To Impulsive Force In Generalized Thermomicrostretch Elastic Solid
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Lovely Professional University, Punjab, INDIA
 
2
Department of Mathematics, S.G.A.D. Govt. College, Punjab, INDIA
 
 
Online publication date: 2015-09-19
 
 
Publication date: 2015-08-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(3):487-502
 
KEYWORDS
ABSTRACT
A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms have been inverted into physical domain numerically and components of normal displacement, normal force stress, couple stress and microstress have been illustrated graphically.
REFERENCES (18)
1.
Abbas I.A. and Othman M.I.A. (2012): Plane waves in generalized thermo-microstretch elastic solid with thermal relaxation using finite element method. – Int. J. Thermophys., vol.33, No.12, pp.2407-2423.
 
2.
Ciarletta M. (1999): A theory of micropolar thermoelasticity without energy dissipation. – J. Thermal Stresses, vol.22, pp.581-594.
 
3.
Eringen A.C. (1966): Linear theory of micropolar elasticity. – J. Math. Mech., vol.15, pp.909-923.
 
4.
Eringen A.C. (1970): Foundation of micropolar thermoelasticity. – Course of Lectures No.23.- Verlag: Springer.
 
5.
Eringen A.C. (1971): Micropolar elastic solids with stretch. – Ari. Kitabevi Matbassi, vol.24, pp.1-18.
 
6.
Eringen A.C. (1984): Plane waves in non-local micropolar elasticity. – Int. J. Eng. Sci., vol.22, pp.1113-1121.
 
7.
Eringen A.C. (1990): Theory of thermo-microstretch elastic solids. – Int. J. Eng. Sci., vol.28, pp.1291-1301.
 
8.
Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – J. Elasticity, vol.2, pp.1-7.
 
9.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. – J. Elasticity, vol.31, pp.189-208.
 
10.
Kumar R. and Partap G.(2009): Axisymmetric free vibrations in microstretch thermoelastic homogenous isotropic plate. – Int. J. of App. Mech. and Eng., vol.14, No.1, pp.211-237.
 
11.
Kumar R. and Deswal S. (2001): Disturbance due to mechanical and thermal sources in a generalized thermomicrostretch elastic space. – Sadhana, vol.26, No.6, pp.529-547.
 
12.
Kumar R., Singh R. and Chadha T.K. (2003): Plane strain problem in microstretch elastic solid. – Sadhana, vol.28, No.6, pp.975-990.
 
13.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. – J. Mech. Phys. Solid, vol.15, pp.299-309.
 
14.
Lotfy K. and Othman M.I.A. (2012): Effect of rotation on plane waves in generalized thermo-microstretch elastic solid with a relaxation time. – Meccanica, vol.47, pp.1467-1486.
 
15.
Nowacki W. (1966): Couple stresses in the theory of thermoelasticity. - Proc. ITUAM Symposia, Vienna, Springer-Verlag, pp.259-278.
 
16.
Othman M.I.A. and Lotfy K. (2010): On the plane waves of generalized thermo-microstretch elastic half-space under three theories. – Int. Communications in Heat and Mass Transfer, vol.37, No.2, pp.192–200.
 
17.
Othman M.I.A. Atwa S.Y., Jahangir A. and Khan A. (2013): Effect of magnetic field and rotation on generalized thermo microstretch elstic solid with mode-I crack under Green Naghdi theory. – Computational Mathematics and Modeling, vol.24, No.4, pp.556-591.
 
18.
Press W.H. et al. (1986): Numerical Recipes in FORTRAN 2nd Edition. – Cambridge: Cambridge University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top