ORIGINAL PAPER
Response Due to Concentrated Force in Micropolar Elastic Solid with Voids
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, S.G.A.D. Govt. College Tarn Taran-143411, Punjab, India
 
 
Online publication date: 2014-12-30
 
 
Publication date: 2014-11-01
 
 
International Journal of Applied Mechanics and Engineering 2014;19(4):755-769
 
KEYWORDS
ABSTRACT
The eigen value approach, following Laplace and Fourier transforms has been employed to find the general solution of the field equation in a micropolar elastic solid with voids for the plane strain problem. An application of an infinite space with impulsive force has been taken to illustrate the utility of the approach. The integral transformations have been inverted by using a numerical inversion technique to get result in physical domain. The result in the form of normal displacement, volume fraction, normal force stress, tangential force stress and tangential couple stress components has been obtained numerically and illustrated graphically to depict the effect of micropolarity and voids.
REFERENCES (23)
1.
Chandrasekharaiah D.S. (1989): Complete solution in the theory of elastic materials with voids-II. - The Quarterly Journal of Mechanics and Applied Mathematics, vol.42, pp.41-54.
 
2.
Cosserat E. and Cosserat F. (1909): Theories des Corp Formables. - Paris- Aherrman.
 
3.
Cowin S.C. and Nunziato J.W. (1983): Linear elastic materials with voids. - Journal of Elasticity, vol.13, pp.125-147.
 
4.
Eringen A.C. (1966): Linear theory of micropolar elasticity. - Journal of Mathematical and Mechanics, vol.15, pp.909-924.
 
5.
Eringen A.C. (1968): Theory of micropolar elasticity in fracture. - Academic Press, NewYork, vol.2, pp.621-729.
 
6.
Eringen A.C. and Suhubi E.S. (1964): Non-linear theory of simple micropolar solids I. - International Journal of Engineering Sciences, vol.2, pp.189-203.
 
7.
Honig G. and Hirdes V. (1984): A method for the numerical inversion of the Laplace transforms. - Journal of Computational and Applied Mathematics, vol.10, pp.113-132.
 
8.
Iesan D.A. (1985): Shock waves in micropolar elastic materials with voids. - Analele Stiintifice ale Universitatu Al. l. Cuza din lasi Seria Noua Sectiunea la matematica, vol.3, pp.177-186.
 
9.
Kumar R. and Ailawalia P. (2007): Interaction in a micropolar thermoelastic medium with voids due to distributed loads; Int. J. Applied Mechanics and Engng., vol. 12, pp. 987-1007.
 
10.
Kumar R., Deswal S. and Tomar S.K. (2002): A note on surface wave dispersion of a 1-layer micropolar liquid saturated half-space. - ISET Journal of Earthquake Technology, Technical note, vol.39, pp.367-382.
 
11.
Kumar R. and Kumar R. (2011): Wave propagation in transversely isotropic generalized thermoelastic half space with voids under initial stress. - Multidis. Modeling Materials Struct., vol.17.
 
12.
Kumar R., Kumar Rajeev (2009): Analysis of waves motion in transversely isotropic medium with voids under a inviscid liquid layer. - Can. J. Phys., vol.87, pp.377- 388.
 
13.
Madeo A. and Gavrilyuk S. (2010): Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. - European J. Mech.-A/Solids, vol.29, No.5, pp.897-910.
 
14.
Marin M. (1996a): On elastostatics of micropolar materials with voids. - Bull. Stiinca Univ. Politech. Ser. Math., vol.41, pp.29-37.
 
15.
Marin M. (1996b): Generalized solutions in elasticity of micropolar bodies with voids. - Revista dele Academia Canaria de Ciencias, vol.8, pp.101-106.
 
16.
Marin M. (1998): A temporally evolutionary equation in elasticity of micropolar bodies with voids. - Politehn. Univ. Bucharest Sci. Bull. Ser. Appl. Math. Phys., vol.60, pp.3-12.
 
17.
Mindlin R.D. (1964): Microstructure in linear elasticity. - Archive for Rational Mechanics and Analysis, vol.16, pp.51-78.
 
18.
Nunziato J.W. and Cowin S.C. (1979): A non-linear theory of elastic materials with voids. - Archive for Rational Mechanics and Analysis, vol.72, pp.175-201.
 
19.
Scarpetta E. (1990): On the fundamental solution in micropolar elasticity with voids. - Acta Mechanica, vol.82, pp.151-158.
 
20.
Scarpetta E. (1995): Wellposedness theorems for linear elastic materials with voids. - International Journal of Engineering Sciences, vol.33, pp.151-161.
 
21.
Singh R. and Singh K. (2013): Eigen value approach in micropolar medium with voids. - Int. J. Applied Mechanics and Engng., vol.18, No.2, pp.521-536.
 
22.
Tomar S.K. and Khurana A. (2011): Transmission of longitudinal wave through microporous elastic solid interface. - Int. J. Engng. Sci. and Tech., vol.3, No.2, pp.12-21.
 
23.
Wheeler L.T. and Isaak A.K. (1982): On voids of minimum stress concentration. - International Journal of Solids and Structures, vol.18, pp.85-89.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top