ORIGINAL PAPER
Response of stiffness and viscosity on the energy ratios at piezo-visco-thermo-elastic medium
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Mathematics, Chaudary Devi Lal University, Sirsa, India
 
2
Mathematics, Chaudary Devi Lal, University, Sirsa
 
3
Mathematics, Indira Gandhi University, Meerpur, Rewari
 
4
Mathematics, Indira Gandhi University, Meerpur, Rewari, India
 
 
Submission date: 2023-08-26
 
 
Final revision date: 2023-10-20
 
 
Acceptance date: 2023-11-08
 
 
Online publication date: 2024-03-26
 
 
Publication date: 2024-03-27
 
 
Corresponding author
M.S. Barak   

Mathematics, Indira Gandhi University, Meerpur, Rewari, 123401, REWARI, India
 
 
International Journal of Applied Mechanics and Engineering 2024;29(1):54-72
 
KEYWORDS
TOPICS
ABSTRACT
This article presents a mathematical framework that characterizes a transversely isotropic piezo-visco-thermo-elastic medium within the context of the dual-phase lags heat transfer law (PVID) applied to an elastic medium (ES). Specifically, the study investigates the propagation of plane waves within the elastic medium and their interaction with the imperfect interface of the ES/PVID media. This interaction results in two waves reflecting back into the elastic medium and four waves propagating through the piezo-visco-thermo-elastic medium. The research explores the distribution of energy between the reflected and transmitted waves by analyzing amplitude ratios at the boundary interfaces, considering factors such as phase delays, viscosity effects, and wave frequency. The study illustrates the influence of boundary stiffness and viscosity parameters on these energy ratios through graphical representations. The study's findings are consistent with the principles of the energy balance law, and the research also delves into specific cases of interest. Overall, this investigation provides insights into wave behavior within complex media and offers potential applications across various fields.
REFERENCES (37)
1.
Mindlin R.D. (1974): Equations of high frequency vibrations of thermopiezoelectric crystal plates.– Int. J. Solids Struct., vol.10, No.6, pp.625-637.
 
2.
Nowacki W. (1978): Some general theorems of thermopiezoelectricity.– J. Therm. Stress., vol.1, No. 2, pp.171-182.
 
3.
Nowacki W. (1979): Foundation of Linear Piezoelectricity.– In: H. Parkus, editor. Electro-magnetic interactions in elastic solids. Chapter 1. Springer, Wein.
 
4.
Chandrasekharaiah D.S. (1988): A generalized linear thermoelasticity theory for piezoelectric media.– Acta Mech., vol.71, No.1-4, pp.39-49.
 
5.
Pang Y., Wang Y.S., Liu J.X. and Fang D.N. (2008): Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media.– Int. J. Eng. Sci., vol.46, No.11, pp.1098-1110.
 
6.
Kuang Z.B. and Yuan X.G. (2011): Reflection and transmission of waves in pyroelectric and piezoelectric materials.– J. Sound Vib., vol.330, No.6, pp.1111-1120.
 
7.
Abd-alla A. El Nour N., Hamdan A.M., Giorgio I. and Del Vescovo D. (2014): The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials.– Arch. Appl. Mech., vol.84, No.9-11, pp.1229-1248.
 
8.
Yadav A.K., Barak, M.S., and Gupta V. (2023): Reflection at the free surface of the orthotropic piezo-hygro-thermo-elastic medium.– International Journal of Numerical Methods for Heat & Fluid Flow, vol.33, No.10, pp.3535-3560.
 
9.
Gupta V. and Barak M.S. (2023): Photo-thermo-piezo-elastic waves in semiconductor medium subject to distinct two temperature models with higher order memory dependencies.– International Journal of Numerical Methods for Heat & Fluid Flow, vol.34, No.4, DOI:10.1108/HFF-07-2023-0380.
 
10.
Pathania V., Kumar R., Gupta V. and Barak M.S. (2022): Generalized Plane Waves in a Rotating Thermoelastic Double Porous Solid, Int. J. Appl. Mech. Eng., vol.27, No.4, pp.138-154.
 
11.
Pathania V., Kumar R., Gupta V., and Barak M.S. (2023): Double porous thermoelastic waves in a homogeneous, isotropic solid with inviscid liquid.– Arch. Appl. Mech., vol.93, pp.1943-1962.
 
12.
Gupta V., Kumar R., Kumar M., Pathania V. and Barak M.S. (2023): Reflection/transmission of plane waves at the interface of an ideal fluid and nonlocal piezothermoelastic medium.– Int. J. Numer. Methods Heat Fluid Flow, vol.33, No.2, pp.912-937.
 
13.
Barak M.S., Kumar R., Kumar R. and Gupta V. (2023): The effect of memory and stiffness on energy ratios at the interface of distinct media.– Multidiscip. Model. Mater. Struct., vol.19, No.3, pp.464-492.
 
14.
Gupta V., Kumar R., Kumar R. and Barak M.S. (2023): Energy analysis at the interface of piezo/thermoelastic half spaces.– Int. J. Numer. Methods Heat Fluid Flow, vol.33, No.6, pp.2250-2277.
 
15.
Barak M.S., Kumar R., Kumar R. and Gupta V. (2023): Energy analysis at the boundary interface of elastic and piezothermoelastic half-spaces.– Indian J. Phys., vol.97, pp.2369-2383.
 
16.
Barak M.S. and Gupta V. (2023): Memory-dependent and fractional order analysis of the initially stressed piezo-thermoelastic medium.– Mech. Adv. Mater. Struct., pp.1-15, https://doi.org/10.1080/153764....
 
17.
Gupta V. and Barak M.S. (2023): Quasi-P wave through orthotropic piezo-thermoelastic materials subject to higher order fractional and memory-dependent derivatives.– Mech. Adv. Mater. Struct., pp.1-15, https://doi.org/10.1080/153764....
 
18.
Voigt W. (1887): Theoretical Studies on the Elasticity of Crystals.– Royal Society of Sciences in Göttingen.
 
19.
Gurtin E., Morton E. and Sternberg E. (1962): On the Linear Theory of Viscoelasticity.– Brown Univ. Provid. Ri. Div. Appl. Math.
 
20.
Atabek H.B. and Lew H.S. (1966): Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube.– Biophys. J., vol.6, No.4, pp.481-503.
 
21.
Sharma K.D., Kumar R., Kakkar M.K. and Ghangas S. (2021): Three dimensional waves propagation in thermo-viscoelastic medium with two temperature and void.– IOP Conf. Ser. Mater. Sci. Eng., vol.1033, No.1, p.012059.
 
22.
Abouelregal A.E., Ahmad H., Yao S.W. and Abu-Zinadah H. (2021): Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model.– Open Phys., vol.19, No.1, pp.504-518.
 
23.
Abouelregal A.E., Ahmad H., Badr S.K., Almutairi B. and Almohsen B. (2022): Viscoelastic stressed microbeam analysis based on Moore-Gibson-Thompson heat equation and laser excitation resting on Winkler foundation.– J. Low Freq. Noise Vib. Act. Control, vol.41, No.1, pp.118-139.
 
24.
Mirsky I. (1967): Wave propagation in a viscous fluid contained in an orthotropic elastic tube.– Biophys. J., vol.7, No.2, pp.165-186.
 
25.
Atabek H.B. (1968): Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube.– Biophys. J., vol.8, No.5, pp.626-649.
 
26.
Yasein M., Mabrouk N., Lotfy K. and El-Bary A.A. (2019): The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type.– Results Phys., vol.15, pp.102766.
 
27.
Lotfy K., El-Bary A.A. and Tantawi R.S. (2019): Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory.– Eur. Phys. J. Plus, vol.134, No.6, pp.280.
 
28.
Lotfy K. and Tantawi R.S. (2020): Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field.– Silicon, vol.12, No.2, pp.295-303.
 
29.
Lotfy K., Elidy E.S. and Tantawi R.S. (2021): Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material.– Int. J. Mod. Phys. C, vol.32, No.07, pp. 2150088.
 
30.
Mahdy A.M.S., Lotfy K., El-Bary A. and Tayel I.M. (2021): Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses.– Eur. Phys. J. Plus, vol.136, No.6, pp.651.
 
31.
Mahdy A.M.S., Gepreel K.A., Lotfy K. and El-Bary A.A. (2021): A numerical method for solving the Rubella ailment disease model.– Int. J. Mod. Phys. C, vol.32, No.7, pp.2150097.
 
32.
Tzou D.Y. (1995): A unified field approach for heat conduction from macro- to micro-scales.– J. Heat Transfer, vol.117, pp.8-16.
 
33.
Achenbach J.D. (1973): Wave Propagation in Elastic Solids.– Amsterdam: North Holland.
 
34.
Biot M.A. (1956): Thermoelasticity and irreversible thermodynamics.– J. Appl. Phys., vol.27, No.3, pp.240-253.
 
35.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity.– J. Mech. Phys. Solids, vol.15, No.5, pp.299-309.
 
36.
Quintanilla R. and Racke R. (2006): Qualitative aspects in dual-phase-lag thermoelasticity.– SIAM J. Appl. Math., vol.66, No.3, pp.977-1001.
 
37.
Kumar R. and Sharma P. (2021): Response of two-temperature on the energy ratios at elastic-piezothermoelastic interface.– J. Solid Mech., vol.13, No.2, pp.186-201.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top