ORIGINAL PAPER
Reversed Robin Hood Syndrome in the Light of Nonlinear Model of Cerebral Circulation
,
 
 
 
More details
Hide details
1
Institute of Automatic Control and Robotics Warsaw University of Technology ul. św. A. Boboli 8 02-525 , Warszawa, POLAND
 
 
Online publication date: 2017-06-09
 
 
Publication date: 2017-05-24
 
 
International Journal of Applied Mechanics and Engineering 2017;22(2):459-464
 
KEYWORDS
ABSTRACT
The brain is supplied by the internal carotid and vertebro-basilar systems of vessels interconnected by arterial anastomoses and forming at the base of the brain a structure called the Circle of Willis (CoW). An active intrinsic ability of cerebral vascular bed maintains constant Cerebral Blood Flow (CBF) in a certain range of systemic pressure changes. This ability is called autoregulation and together with the redundant structure of the CoW guarantee maintaining CBF even in partial occlusion of supplying arteries. However, there are some situations when the combination of those two mechanisms causes an opposite effect called the Reversed Robin Hood Syndrome (RRHS). In this work we proposed a model of the CoW with autoregulation mechanism and investigated a RRHS which may occur in the case of Internal Carotid Artery (ICA) stenosis combined with hypercapnia. We showed and analyzed the mechanism of stealing the blood by the contralateral side of the brain. Our results were qualitatively compared with the clinical reports available in the literature.
REFERENCES (17)
1.
Traczyk W.Z., Trzebski A. and Godlewski A. (2007): Human Physiology with Elements of Applied and Clinical Physiology. - Polish. Warsaw, PWZL.
 
2.
Himwich W.A. and Clark M.E. (1971): Cerebral blood flow comparisons between model and prototype. - Journal of Applied Physiology, vol.31, No.6, pp.873-879.
 
3.
Himwich W.A. and Clark M.E. (1974): Simulation of flow and pressure distributions in the circle of Willis. - In The Pathology of Cerebral Circulation (pp.140-152). W. de Gruyter, Berlin.
 
4.
Kufahl R.H. and Clark M.E. (1985): A circle of Willis simulation using distensible vessels and pulsatile flow. - J. Biomech. Eng, vol.107, No.2, pp.112-122.
 
5.
Hillen B., Drinkenburg B.A., Hoogstraten H.W. and Post L. (1988): Analysis of flow and vascular resistance in a model of the cricle of Willis. - Journal of Biomechanics, vol.21, No.10, pp.807-814.
 
6.
Cassot F., Vergeur V., Bossuet P., Hillen B., Zagzoule M. and Marc-Vergnes J.P. (1995): Effects of anterior communicating artery diameter on cerebral hemodynamics in internal carotid artery disease. - Circulation, vol.92, No.10, pp.3122-3131.
 
7.
Cassot F., Zagzoule M. and Marc-Vergnes J.P. (2000): Hemodynamic role of the circle of Willis in stenoses of internal carotid arteries. An analytical solution of a linear model. - Journal of Biomechanics, vol.33, No.4, pp.395-405.
 
8.
Piechna A. and Pieniak M. (2016): Numerical simulation of the effect of supplying arteries occlusion on cerebral blood flow. - In Advanced Mechatronics Solutions (pp.181-186). Springer International Publishing.
 
9.
Cieślicki K. (2004): Experimental and numerical modelling of flow in the human cerebral arteries. - Journal of Medical Informatics and Technologies, 7.
 
10.
Alastruey J., Parker K.H., Peiró J., Byrd S.M. and Sherwin S.J. (2007): Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. - Journal of Biomechanics, vol.40, No.8, pp.1794-1805.
 
11.
Abdi M., Karimi A., Navidbakhsh M., Rahmati M., Hassani K. and Razmkon A. (2013): Modeling the circle of willis using electrical analogy method under both normal and pathological circumstances. - Journal of Biomedical Physics and Engineering, vol.3, No.2, 45.
 
12.
Moore S.M., Moorhead K.T., Chase J.G., David T. and Fink J. (2005): One-dimensional and three-dimensional models of cerebrovascular flow. - Journal of Biomechanical Engineering, vol.127, No.3, pp.440-449.
 
13.
Reorowicz P., Obidowski D., Klosinski P., Szubert W., Stefanczyk L. and Jozwik K. (2014): Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. - Journal of Biomechanics, vol.47, No.7, pp.1642-1651.
 
14.
Šutalo I.D., Bui A., Ahmed S., Liffman K. and Manasseh R. (2009): Modelling of flow through the circle of Willis and cerebral vasculature. - Modelling in Medicine and Biology VIII, 13, 83.
 
15.
Cebral J.R., Castro M.A., Soto O., Löhner R. and Alperin N. (2003): Blood-flow models of the circle of Willis from magnetic resonance data. - Journal of Engineering Mathematics, vol.47, No.3, pp.369-386.
 
16.
Cieslicki K. and Ciesla D. (2005): Investigations of flow and pressure distributions in physical model of the circle of Willis. - Journal of Biomechanics, vol.38, No.11, pp.2302-2310.
 
17.
Alexandrov A.V., Sharma V.K., Lao A.Y., Tsivgoulis G., Malkoff M.D. and Alexandrov A.W. (2007): ReversedRobin Hood syndrome in acute ischemic stroke patients. - Stroke, vol.38, No.11, pp.3045-3048.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top