In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.
REFERENCES(22)
1.
Amiri A. and Vafai K. (1994): Analysis of dispersion effects and non- thermal equilibrium, non-Darcian variable porosity incompressible flow through porous media. – Int. J. Heat and Mass Transf., vol.37, pp.939-954.
Chotard-Ghodsnia R. and Verdier C. (2007): Rheology of living materials. Chapter in Rheology of Living Materials. – pp.1-31. DOI: 10.1007/978-0-8176-4411-6_1.
Fitt A.D. and Gonzalez G. (2006): Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber. – Bulletin of Mathematical Biology, DOI 10.1007/s11538-005-9015-2.
Gabelt B.T. and Kaufman P. (1995). Aqueous humor hydrodynamics. – In: Kaufman PL, Alm A, Ed. Alder“s Physiology of the Eye, vol.8. St. Louis, MO: Mosby, pp.237-289.
Gedde S.J. (2012): The tube trials: new information to guide clinicians updates on six recent studies. – Ophthalmology Management, vol.12, No.16, pp.52-58.
Goldmann H. (1950) Minute volume of the aqueous in the anterior chamber of the human eye in normal state and in primary glaucoma. – Ophthalmologica. vol.120, No.1-2, pp.19-21.
Nakayama A., Kuwahara F. and Hayashi T. (2004): Numerical model ling for three-dimensional heat and fluid flow through a bank of cylinders in yaw. – J. Fluid Mech., vol.498, pp.139-159.
Nakayama A., Kuwahara F. and Kodama Y. (2006): A thermal dispersion flux transport equation and its mathematical modeling for heat and fluid flow in a porous medium. – J. Fluid Mech. vol.563, pp.81-96.
Tsai C.Y., Novack M. and Roffe G. (1988): Rheological and heat transfer characteristics of flowing coal-water mixtures. – Final Report, DOE/Mc 23255-2763.
Verdier C., Etienne J., Duperray A. and Preziosi L. (2009): Review. Rheological properties of biological materials. – C. R. Physique, Special Issue on “Complex and Biofluids”, Ed. C. Misbah, vol.10, pp.790-811.
Walicka A. (2012): Porous curvilinear squeeze film bearing with rough surfaces lubricated by a power-law fluid. – Journal of Porous Media, vol.15, No.1, pp.29-49.
Walicka A. and Walicki E. (1999): Inertia effect in the squeeze film of a couple-stress fluid in biological bearings. – Applied Mechanics and Engineering, vol.4, No.2, pp.363-373.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.