ORIGINAL PAPER
Review on Relationship Between the Universality Class of the Kardar-Parisi-Zhang Equation and the Ballistic Deposition Model
 
More details
Hide details
1
Miskolc-Egyetemvaros, 3515, Institute of Machine and Product Design, University of Miskolc, Hungary
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):206-216
 
KEYWORDS
ABSTRACT
We have analysed the research findings on the universality class and discussed the connection between the Kardar-Parisi-Zhang (KPZ) universality class and the ballistic deposition model in microscopic rules. In one dimension and 1+1 dimensions deviations are not important in the presence of noise. At the same time, they are very relevant for higher dimensions or deterministic evolution. Mostly, in the analyses a correction scale higher than 1280 has not been studied yet. Therefore, the growth of the interface for finite system size β ≥ 0.30 value predicted by the KPZ universality class is still predominant. Also, values of α ≥ 0.40, β ≥ 0.30, and z1.16 obtained from literature are consistent with the expected KPZ values of α = 1/2, β = 1/3, and z = 3/2. A connection between the ballistic deposition and the KPZ equation through the limiting procedure and by applying the perturbation method was also presented.
REFERENCES (45)
1.
Tiller W.A. (1991): The Science of Crystallization, Macroscopic.– Phenomena and Defect Generation Cambridge University Press, Cambridge, UK.
 
2.
Ritter G.C., Matthai O., Takai A., Rocher A., Cullis S., Ranganathan S. and Kuroda K., Eds. (1998): Recent Developments in Thin Film Research: Epitaxial Growth and Nanostructures, Electron Microscopy and X-Ray Diffraction. Elsevier Science.– Amsterdam.
 
3.
G. Vekilov G., Iwan J. and Alexander D. (2000): Dynamics of layer growth in protein crystallization.– Chemical Reviews 100, No. 6., pp.2061-2090.
 
4.
Jackson K.A. (2006): Kinetic Processes: Crystal Growth, Diffusion, and Phase Transformations in Materials.– John Wiley & Sons.
 
5.
Chernov A.A. and Nishinaga T. (1987): Growth shapes and their stability at anisotropic interface kinetics: theoretical aspects for solution growth.– Morphology of Crystals, Terra Science Publishers, Tokyo, pp.207-267.
 
6.
Saito Y. (1996): Statistical physics of crystal growth.– World Scientific.
 
7.
Pimpinelli A. and Villain J. (1999): Physics of crystal growth.– Cambridge University Press, p.400.
 
8.
Michely T. and Krug J. (2004): Mounds Islands. Atoms.– Springer Series in Surface Science, vol.42, Springer-Verlag Berlin Heidelberg, 10.1007/978-3-642-18672-1.
 
9.
Aqua J-N. (2013): Growth and self-organization of SiGe nanostructures.– Physics Reports, vol.522, No.2, pp.59-189.
 
10.
Vold M.J. (1959): A numerical approach to the problem of sediment volume.– J. Colloid Sci., vo.14, No.2, pp.168-174.
 
11.
Corwin I. (2016) Kardar-Parisi-Zhang universality.– Notices of the AMS, vol.63, No.3, pp.230-239.
 
12.
Tracy C. and Widom H. (1994): Level-spacing distributions and the Airy kernel.– Commun. Math. Phys., vol.159, pp.151-174.
 
13.
Tracy C. and Widom H. (1996): On orthogonal and symplectic matrix ensembles.– Commun. Math. Phys., vol.177, pp.727-754.
 
14.
Villain J. (1991): Continuum models of crystal growth from atomic beams with and without desorption.– Journal de Physique, vol.1, No.1, pp.19-42.
 
15.
Barabasi A.-L. and Stanley E. (1995): Fractal Concepts in Surface Growth.– Cambridge Univ. Press, Cambridge.
 
16.
Kardar M., Parisi G. and Zhang Y.C. (1986): Dynamic scaling of growing interfaces.– Physical Review Letters, vol.56, No.9, p.889-892.
 
17.
Hwa T. and Kardar M. (1992): Avalanches, hydrodynamics, and discharge events in models of sandpiles.– Physical Review A, vol.45, No.10, p.7002-7023.
 
18.
Marsili M., Maritan A., Toigo F. and Banavar J.R. (1996): Stochastic growth equations and reparametrization invariance.– Reviews of Modern Physics, vol.68, No.4, pp.963-983.
 
19.
Lam C.-H. and Sander L.M. (1993): Inverse method for interface problems.– Physical Review Letters, vol.71, No.4, 561-564.
 
20.
Park S.-C., Kim D. and ParkJ.-M. (2001): Derivation of continuum stochastic equations for discrete growth models.– Physical Review E, vol.65, No.1, pp.1-4, https://doi.org/10.1103/PhysRe....
 
21.
Racz Z., Siegert M., Liu D. and Plischke M. (1991): Scaling properties of driven interfaces: symmetries, conservation laws, and the role of constraints.– Physical Review A, vol.43, No.10, pp.5275-5283.
 
22.
Vvedensky D.D., Zangwill A., Luse C.N. and Wilby M.R. (1993): Stochastic equations of motion for epitaxial growth.– Physical Review E, vol.48, No.2, pp.852-862.
 
23.
Predota M. and Kotrla M. (1996): Stochastic equations for simple discrete models of epitaxial growth.– Physical Review E, vol.54, No.4, pp.3933-3942.
 
24.
Costanza G. (1997): Langevin equations and surface growth.– Physical Review E 55, No.6, pp.6501-6506.
 
25.
Bantay P. and Janosi I.M. (1992): Avalanche dynamics from anomalous diffusion.– Physical Review Letters, vol.68, No.13, pp.2058-2061.
 
26.
Corral A. and Diaz-Guilera A. (1997): Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality.– Physical Review E 55, No.3, pp.2434-2445.
 
27.
Tokihiro T., Takahashi D., Matsukidaira J. and Satsuma J. (1996): From soliton equations to integrable cellular automata through a limiting procedure.– Physical Review Letters, vol.76, No.18, pp.3247-3250.
 
28.
Nagatani T. (1998): From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure.– Physical Review E, vol.58, No.1, pp.700-703.
 
29.
Vvedensky D.D. (2003): Edwards-Wilkinson equation from lattice transition rules.– Physical Review E, vol.67, No.2, pp.1-4.
 
30.
Kardar M., Parisi G., Zhang Y.-C. (1986): Dynamic scaling of growing interfaces.– Physical Review Letters, vol.56, No.9, pp.889-892.
 
31.
Costanza G. (1997): Langevin equations and surface growth.– Physical Review E, vol.55, No.6, pp.6501-6506.
 
32.
Edwards S.F. and Wilkinson D.R. (1982): The surface statistics of a granular aggregate.– Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.381, No.1780, pp.17-31.
 
33.
Katzav E. and Schwartz M. (2004): What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation?– Physical Review E, vol.70, No.6, pp.1-8.
 
34.
Miranda R., Ramos M. and Cadilhe A. (2003): Finite-size scaling study of the ballistic deposition model in (1+ 1)-dimensions.– Computational Materials Science, vol.27, No.1-2, pp.224-229.
 
35.
Family F. and Vicsek T. (1985): Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model.– Journal of Physics A: Mathematical and General, vol.18, No.2, p.75.
 
36.
Cadilhe A.M., Stoldt C.R., Jenks C.J., Thiel P.A. and Evans J.W. (2000): Evolution of far-from-equilibrium nanostructures on Ag (100) surfaces: Protrusions and indentations at extended step edges.– Physical Review B, vol.61, No.7, pp.4910-4925.
 
37.
Family F. and Vicsek T. (1991): Dynamics of Fractal Surfaces.– World Scientific.
 
38.
Corwin I. (2016): Kardar-Parisi-Zhang universality.– Notices of the AMS, vol.63, No.3, pp.230-239.
 
39.
Bognár G. (2020): Roughening in nonlinear surface growth model.– Applied Sciences, vol.10, No.4, p.10. https://doi.org/10.3390/app100....
 
40.
Barna I.F., Bognár G., Guedda M., Mátyás L. and Hriczó K. (2020): Analytic self-similar solutions of the Kardar-Parisi-Zhang interface growing equation with various noise terms.– Mathematical Modelling and Analysis, vol.25, No.2, pp.241-256. 2020. https://doi.org/10.3846/mma.20....
 
41.
Barna I.F., Bognár G., Guedda M., Mátyás L. and Hriczó K. (2019): Analytic traveling-wave solutions of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms.– In book: Differential and Difference Equations with Applications, ICDDEA, Lisbon, Portugal, pp.239-253, arXiv:1908.09615.
 
42.
Sayfidinov O. and Bognár G. (2020): Numerical solutions of the Kardar-Parisi-Zhang interface growing equation with different noise terms.– In: Jármai K., Voith K. (eds) Vehicle and Automotive Engineering 3. VAE 2020. Lecture Notes in Mechanical Engineering. Springer, vol.3, pp.302-311, https://doi.org/10.1007/978-98....
 
43.
Bognár G. (2020): Roughening in nonlinear surface growth model.– Applied Sciences, vol.10, No.4, p.1422, doi:10.3390/app10041422.
 
44.
Cross M.C. and Hohenberg P.C. (1993): Pattern formation outside of equilibrium.– Reviews of Modern Physics, vol.65, No.3, pp.851-1112.
 
45.
Sayfidinov O. and Bognár G. (2020): One dimensional Kardar-Parisi-Zhang equation in various initial condition amplitudes.– Journal of Advances in Applied & Computational Mathematics, vol.7, pp.32-37.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top