ORIGINAL PAPER
Reynolds Number Effects in the Flow of a Vočadlo Electrorheological Fluid in a Curved Gap
,
 
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 4, 65-516, Zielona Góra, Poland
 
 
Online publication date: 2017-09-09
 
 
Publication date: 2017-08-01
 
 
International Journal of Applied Mechanics and Engineering 2017;22(3):675-695
 
KEYWORDS
ABSTRACT
Many electrorheological fluids (ERFs) as fluids with micro-structure demonstrate a non-Newtonian behaviour. Rheometric measurements indicate that some flows of these fluids may by modelled as the flows of a Vočadlo ER fluid. In this paper, the flow of a Vočadlo fluid – with a fractional index of non-linearity – in a narrow gap between two fixed surfaces of revolution with a common axis of symmetry is considered. The flow is externally pressurized and it is considered with inertia effect. In order to solve this problem the boundary layer equations are used. The Reynolds number effects (the effects of inertia forces) on the pressure distribution are examined by using the method of averaged inertia terms of the momentum equation. Numerical examples of externally pressurized flows in the gap between parallel disks and concentric spherical surfaces are presented.
 
REFERENCES (38)
1.
Winslow W.H. (1949): Induced fibration of suspensions. – J. Appl. Phys. vol.20, pp.1137-1140.
 
2.
Shulman Z.P., Gorodkin P.N., Korobko E.V. and Gleb V.K. (1981): The electrorheological effect and its possible uses. – J. Non-Newtonian Fluid Mech., vol.8, pp.29–41.
 
3.
Jordan T.C. and Show M.T. (1989): Electrorheology. – IEEE Trans on Electrical Insulations, vol.24, No.5, pp.849-878.
 
4.
Dimarogonas A.D. and Kollias A. (1992): Electrorheological fluid-controlled smart journal bearings. – Tribology Transactions, vol.35, pp.611-618.
 
5.
Otsubo Y. (1992): Electrorheological properties of silica suspensions. – Journal of Rheology, vol.36, No.3, pp.479-496.
 
6.
Jung S.Y. and Choi S.-B. (1995): Analysis of a short squeeze-film damper operating with electrorheological fluids. – Tribology Transactions, vol.38, pp.857-862.
 
7.
Kobayashi K., Okamura K., Sakai T. and Sato M. (1996): Evaluation of the flow rate of an electro-rheological fluid (corn starch-kerosene) flowing through a narrow channel formed by a pair of electrodes. – Canadian J. Chem. Engng., vol.74, pp.394-398.
 
8.
Shulman Z.P. and Nosov V. (1996): Rotation of the axisymmetric dielectric bodies in electrorheological suspensions. – Int. J. Modern Phys., vol.10, pp.2903-2915.
 
9.
Walicki E. and Walicka A. (1995): Flow of a liquid metal in slots of casting dies. – Proc. of Nat. Conf. “Foundry 95” Kielce Solid Metals Alloys, vol.24, pp.155-164.
 
10.
Walicki E. and Walicka A. (1997): Throughflows of viscoplastic fluids between fixed surfaces of revolution. – Proc. of 5th Nat. Conf. on Multiphase Flows, vol.2, pp.133-136, Gdańsk.
 
11.
Walicki E. and Walicka A. (1998): Reynolds number effects in the flow of an electrorheological fluid between fixed surfaces of revolution. – J. Intelligent Mater. System Structures, vol.9, No.8, pp.662-666.
 
12.
Basavaraja J.S., Sharma S.C. and Jain S.C. (2010): a study of misaligned electrorheological fluid lubricated holeentry hybrid journal bearing. – Tribology International, vol.43, No.5-6, pp.1059-1064.
 
13.
El Wahed A.K. (2011): The influence of solid-phase concentration on the performance of electrorheological fluids in dynamic squeeze flow. – Materials & Design, vol.32, No.3, pp.1420-1426.
 
14.
Lee D.Y. and Wereley N.M. (1999): Quasi-steady Herschel-Bulkley analysis of electro- and magneto-rheological flow mode dampers. – J. Intell. Mat. Systems Structures, vol.10, No.10, pp.761-769.
 
15.
S.R. Hong, S.-B. Choi and N.M. Wereley (2005): Non-dimensional analysis and design of a magnetorheological damper. – Journal of Sound and Vibration, vol.288, pp847-863.
 
16.
Hong S.R., Wereley N.M., Choi Y.-T. and Choi S.-B. (2008): Analytical and experimental validation of a nondimensional Bingham model of mixed-mode magnetorheological damper. – Journal of Sound and Vibration, vol.312, pp.399-417.
 
17.
Choi Y.-T., Cho J.-U., Choi S.-B. and Wereley N.M. (2005): Constitutive models of electrorheological and magnetorheological fluids using viscometers. – Smart Materials and Structures, vol.14, No.5, pp.1025-1036.
 
18.
Covey G.H. and Stanmore B.R. (1981): Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. – J. Non-Newtonian Fluid Mech. vol.8, pp.249-260.
 
19.
Shulman Z.P. (1975): Convective Heat Transfer of Rheologically Complex Fluids. – (in Russian) Energy Moscow.
 
20.
Korobko E.V. (1996): Electrostructured (Electrorheological) Liquids: Singularities of the Hydrodynamics and Usabilities (in Russian). – Belarus Acad. Sci. Minsk.
 
21.
Vočadlo J. and Charles M.W. (1973): Characterization and laminar flow of fluid-like viscoplastic substances. – Can. J. Chem. Engng., vol.31, No.2, pp.116-121.
 
22.
Shen M., Cao J.G., Xue H.T., Huang J.P. and Zhou L.W. (2006): Structure of polydisperse electrorheological fluids: experiment and theory. – Chemical Physics Letters, vol.423, No.1-3, pp.165-169.
 
23.
Falicki J. (2007): The Influence of Viscoplastic Lubricants on the Pressure Distributions in the Thrust Slide Bearings. – [in Polish] PhD Thesis, University Press, Zielona Góra.
 
24.
Esmonde H., See H.H. and Swain M.V. (2009): Modelling of ER squeeze films at low amplitude oscilations. – Journal of Non-Newtionian Fluid Mechanics, vol.161, No.1-3, pp.101-108.
 
25.
Sheng P. and Wen W. (2010): Electrorheology: statics and dynamics. – Solid State Communications, vol.150, No.21-22, pp.1023-1039.
 
26.
Barnes H.A. and Walters K. (1985): The yield stress myth. – Rheol. Acta, vol.24, pp.323-326.
 
27.
Barnes H.A. (1999): The yield stress – a review or ‘παντα ρει‘ – everything flows? – J. Non-Newtonian Fluid Mech., vol.81, pp.133-178.
 
28.
Corradini M.G. and Peleg M. (2005): Consistency of dispersed food systems and its evaluation by squeezing flow viscometry. – J. Text. Stud., vol.36, pp.605-629.
 
29.
Qiao Y. and Zhao X. (2009): electrorheological effect of carbonaceous materials with hierarchical porous structures. – Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.340, No.1-3, pp.33-39.
 
30.
Wunderlich Th. and Brunn P.O. (2000): Pressure drop measurements inside a flat channel – with flush mounted and protruding electrodes of variable length – using an electrorheological fluid. – Experiments in Fluids, vol.28, pp.455-461.
 
31.
Abu-Jdayil B., Asoud H. and Brunn P.O. (2007): Effect of polymer coating on the behavior of an electrorheological fluid in slit flow. – Materials and Design, vol.28, pp.928-940.
 
32.
Whittle M., Firoozian R., Bullough W.A. and Peel D.J. (1994): The pressure response in ER walve flow. – J. Intelligent Mater. System Structures, vol.5, No.1, pp.105-111.
 
33.
Walicka A. (2002): Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels (in Polish). – Zielona Góra: University Press.
 
34.
Walicka A. (2002): Rotational Flows of the Rheologically Complex Media in Thin Annular Channels (in Russian). – Zielona Góra: University Press.
 
35.
Walicka A. (1999): Analysis of polymers flow through dies of forming devices. – Applied Mechanics and Engineering, vol.4, No.2, pp.341-361.
 
36.
Roussel N. (2001): Analyse des Écoulements des Fluides Homogènes Complexes et Plastiques Diphasiques: Application à L’essai de Compression Simple. – PhD Thesis, I. N. S. A., Rennes, France.
 
37.
Walicka A. and Falicki J. (2008): Inertia effects in thrust curvilinear hydrostatic bearing lubricated by a Vočadlo fluid. – International Journal of Applied Mechanics and Engineering, vol.13, No.3, pp.817–828.
 
38.
Abu-Jdayil B. (1996): Electrorheological Fluids in Rotational Couette Flow, Slit Flow and Torsional Flow (Clutch). – Shaker Publishing House, Aachen.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top