ORIGINAL PAPER
Rheology of Drugs For Topical and Transdermal Delivery
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering ul. Szafrana 4, 65-516 , Zielona Góra, Poland
2
University Hospital of Zielona Góra, Oncology Department ul. Zyty 26, 65-046 , Zielona Góra, Poland
Online publication date: 2019-03-12
Publication date: 2019-03-01
International Journal of Applied Mechanics and Engineering 2019;24(1):179-198
KEYWORDS
ABSTRACT
Skin drug delivery systems are a constant source of interest because of the benefits that they offer to overcome many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous, etc.). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Skin drug delivery can be subdivided into topical and transdermal (Fig.1). In a topical administration the drug is intended to act at skin level, this is indicated for the treatment of skin diseases. The aim of transdermal administration is getting a systemic release and in this case the skin represents a barrier not a target. The availability of drugs or other active substances through the skin depends basically on two consecutive steps: the release of these drugs or substances from vehicle or carrier and their subsequent permeation through the skin. Hence, studies on the specific properties of vehicles or carriers, such as their rheological behaviours, are of great interest in the field of pharmaceutical products. The objective of the present study is to systematically characterize a nonlinear rheological behaviour and flow properties of drugs and drug carriers into topical and transdermal administration. To this aim, one- and threedimensional rheological models are presented, which may be used to describe drug release through the skin and through the extracellular and interstitial matrix structures. Finally, the rheological measurements of some commercial creams and ointments were made.
REFERENCES (46)
1.
Lukas L. (1988): The epidermal permeability barrier. – Anat. Embryol, No.178, pp.1-13.
2.
Peter M.E. (1988): Structure and function of stratum corneum permeability barrier. – Drug Develop. Res., vol.13, No.1, pp.97-105.
3.
Kalia Y.N. and Guy R.H. (2001): Modeling transdermal drug release. – Adv. Drug Delivery Rev., vol.48, pp.159-172.
4.
Carreras N., Alonso C., Marti M. and Lis M.J. (2015): Mass transport model through the skin by microencapsulation system. – J. Microencapsulation, vol.32, No.4, pp.358-363.
5.
Milington P.F. and Wilkinson R. (1983): Skin. – Cambridge University Press.
6.
Cross S.E. and Roberts M.S. (2004): Physical enhancement of transdermal drug application: Is delivery technology keeping up with pharmaceutical development? – Curr. Drug Deliv. vol.1. No.1, pp.81-92.
7.
Grassi M. (2008): Membranes in drug delivery. – In: Handbook of Membrane Separations: Chemical, Pharmaceutical, Food and Biotechnological Applications (Pabby A.K., Rizvi S.S.H. and Sastre A.M., Eds), pp.427-464.
8.
Prausnitz M.R. and Langer R. (2008): Transdermal drug delivery. – Nat. Biotechnol., vol.26, No.11, pp.1261-1268.
9.
Anisimov Y.G. and Roberts M.S. (2014): Mathematical models for topical and transdermal drug products. – In: Topical Drug Bioavailability, Bioequivalence and Penetration (Shah V.P., Maibach H.I. and Jenner J., Eds), Second ed., Springer, New York, pp.249-298.
10.
Benson H.A.E. (2005): Transdermal drug delivery: Penetration enhancement techniques. – Curr. Drug. Deliv., vol.2, No.1, pp.23-33.
11.
Walicka A. and Iwanowska-Chomiak B. (2018): Drug diffusion transport through the human skin. – Int. J. of App. Mech. Eng., vol.23, No.4, pp.977-988.
12.
Mikari B.V. and Machadik K.R. (2010): Formulation and evaluation of typical liposomal gel for fluconozole. – Ind. J. Pharm Sci., vol.44, No.4, pp.324-325.
13.
Scheuplein R.J. (2013): A personal view of skin permeation. – Skin Pharm. Physiol., vol.26, No.1, pp.199-212.
14.
Siegel R.A. (1990): PH-sensitive gels: Swelling equilibria, kinetics and applications for drug delivery. – In: Pulsed and Self-Regulated Drug Delivery (Kost J. Ed.), CRC Press, New York, pp.129-157.
15.
Arora A., Prausnitz M.R. and Mitragori S. (2007): Micro-scale devices for transdermal drug delivery. – Int. J. Pharm., No.364, pp.227-236.
16.
Cal K. (2009): Across skin barrier; known methods, new performances. – In: Frontiers in Drug Design and Discovery, vol.4 (Caldwell G.W., Ur-Rahman A., Yan Z., Choudhary M.J., Eds), Bentham Science Publisher, New York, pp.162-188.
17.
Cal K. and Stefanowska J. (2010): Methods for skin permeation enhancement of drug substances. – Technology of drug form, vol.66, No.7, pp.514-520.
18.
Walicka A. and Iwanowska-Chomiak B. (2018): Fractal model of the transdermal drug delivery. – Int. J. App. Mech. Eng., vol.23, No.4, pp.989-1004.
19.
Proksch E., Fölster-Holst R. and Jensen J.M. (2006): Skin barrier function, epidermal proliferation and differentiation in eczema. – J. Dermatol. Sci., vol.43, No.1, pp.159-169.
20.
Bouwstra J.A. and Ponec M. (2006): The skin barrier in healthy and diseased state. – Biochoim. biophys. Acta, No.1758, pp.2080-2095.
21.
Abdallah D.J and Weiss R.G. (2000): Organogels and low molecular mass organic gelators. – Adv. Mat., vol.12, No.12, pp.1237-47.
22.
Goyal S., Sharma P., Ramchandani U., Shrivastava S.K. and Dubey P.K. (2011): Novel anti-inflammatory topical gels. – Int. J. Pharm. Biol. Arch., vol.2, No.4, pp.1087-1094.
23.
Vintiloiu A. and Leroux J.C.(2008): Organogels and their use in drug delivery — a review. – J. Control Release, No.125, pp.179-192.
24.
Shapiro Y.E. (2011): Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. – Prog. Polym. Sci., vol.36, No.4, pp.1184-1254.
25.
Allan S.H. (2012): Hydrogels for biomedical applications. – Adv. Drug Deliv. Rev., vol.64, No.1, pp.18-23.
26.
Anisimov Y.G. and Roberts M.S. (2014): Mathematical models for topical and transdermal drug products. – In: Topical Drug Bioavailability, Bioequivalence, and Penetration (Shah V.P., Maibach H.I., and Jenner J. Eds), Second ed., New York, pp.249-298.
27.
Park E.-K. and Song K.-W. (2010): Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior. – Arch. Pharm. Res., vol.33, No.1, pp.141-150.
28.
Carvalho F.C., Calixto G., Hatakeyama I.N., Luz G.M., Gremião M.P.D. and Chorilli M. (2013): Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. – Drug Develop. Ind. Pharmacy, vol.39, No.11, pp.1750-1757.
29.
Oliveira M.B., Haddad do Prado A., Bernegossi J., Sato C.S., Brunetti I.L., Scarpa M.V., Leonardi G.R., Friberg S.E. and Chorilli M. (2014): Topical application of retinyl palmitate-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. – BioMed Res. Int., vol.2014, art ID 632570, 7pp.
30.
Isaac V.L.B., Chiari-Andréo B.G., Marto J.M., Moraes J.D.D., Leone B.A., Corrêa M.A and Ribeiro H.M. (2015): Rheology as a tool to predict the release of alpha-lipoic acid from emulsions used for the prevention of skin aging. – BioMed Res. Int., vol.2015, art ID 818656, 8pp.
31.
Ferreira P.G., Souza, R.S., Costa V.G. Ferreira V.F., Cruz R.C. and Futuro D.O. (2017): Development and characterization of emulgels for treatment of chronic wounds. – Asian J. Pharm. Tech. Inn., vol.5, No.25, pp.40-48.
32.
Ortan A., Dinu-Parvu C., Ghica M.V., Popescu L.M. and Ionita L. (2011): Rheological study of a liposomal hydrogel based on carbopol. – Rom. Biotech. Letters, vol.16, No.1, pp. 47-54.
33.
Ghica M.V., Hîrjău M., Lupuleasa D. and Dinu-Pîrvu C.-E. (2016): Flow and thixotropic parameters for rheological characterization of hydrogels. – Molecules, vol.21, 786; doi:10.3390/molecules21060786.
34.
Lucero M.J., Ferris C., Sánchez-Gutiérrez C.A., Jiménez-Castellanos M.R. and de-Paz M.-V. (2016): Novel aqueous chitosan-based dispersions as efficient drug delivery systems for topical use. Rheological, textural and release studies. – Carbohydrate Polymers, vol.151, pp.692-699.
35.
Walicka A. (2017): Rheology of Fluids in Mechanical Engineering. – Zielona Góra: University Press.
36.
Guo C., Wang J., Cao F., Lee R. and Zhai G. (2010): Lyotropic liquid crystal systems in drug delivery. – Drug Discovery Today, vol.15, No.23/24, pp.1032-1040.
37.
Chen Y., Ma P. and Gui S. (2014): Cubic and hexagonal liquid crystals as drug delivery systems. – BioMed Res. Int. vol.2014, art. ID 815981, 12 pp.
38.
Nazaruk E., Miszta P., Filipek S., Górecka E., Landau E.M. and Bilewicz R. (2015): Lyotropic cubic phases for drug delivery: diffusion and sustained release from the mesophase evaluated by electrochemical methods. – Langmuir, vol.46, No.31, pp.12753-12761.
39.
Kulkarni C.V., Vishwapathi V.K., Quarshie A., Moinuddin Z., Page J., Kendrekar P. and Mashele S.S. (2017): S elf-assembled lipid cubic phase and cubosomes for the delivery of aspirin as a model drug. – Langmuir, vol.33, No.38, pp.9907-9915.
40.
Astolfi P., Giorgini E., Gambini V., Rossi B., Vaccari L., Vita F., Francescangeli O., Marchini C. and Pisani M. (2017): Lyotropic liquid-crystalline nanosystems as drug delivery agents for 5-fluorouracil: structure and cytotoxicity. – Langmuir, vol.33, No.43, pp.12369-12378.
41.
Chountoulesi M., Pippa N., Pispas S., Chrysina E.D., Forys A., Trzebicka B. and Demetzos C. (2018): Cubic lyotropic liquid crystals as drug delivery carriers: physicochemical and morphological studies. – Int. J. Pharm. No.550, pp.57-70.
42.
Huang Y. and Gui S. (2018): Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. – Roy. Soc. Chem. Adv., vol.8, pp.6978-6987.
43.
Schramm G. (1994): A Practical Approach to Rheology and Rheometry. – Karlsruhe: Haake.
44.
Walters K. (1975): Rheometry. – London: Chapman&Hall.
45.
Ferguson J. and Kembłowski Z. (1991): Applied Fluid Rheology. – London: Elsevier Appl. Sci.
46.
Whorlow R.W. (1992): Rheological Techniques. – New York: Ellis Horwood.