ORIGINAL PAPER
Robust Task Space Trajectory Tracking Control of Robotic Manipulators
 
 
 
More details
Hide details
1
Faculty of the Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):547-568
 
KEYWORDS
ABSTRACT
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
 
REFERENCES (130)
1.
Khatib O. (1987): A unified approach for motion and force control of robot manipulators. – EEE Journal on Robotics and Automation, vol.3, No.1, pp.43-53.
 
2.
Khatib O. (1987). A unified approach for motion and force control of robot manipulators EEE Journal on Robotics and Automation. 3 (1): 43-53.
 
3.
Hsu P., Hauser J. and Sastry S. (1989): Dynamic control of redundant manipulators. – Journal of Robotic Systems, vol.6, No.2, pp.133-148.
 
4.
Hsu P., Hauser J., Sastry S. (1989). Dynamic control of redundant manipulators Journal of Robotic Systems. 6 (2): 133-148.
 
5.
Canudas C., Siciliano B. and Bastin G. (Eds.) (1996): Theory of Robot Control. – London: Springer.
 
6.
Canudas C., Siciliano B., Bastin G. (1996). Theory of Robot Control. Springer, London.
 
7.
Siciliano B., Sciavicco L., Villani L. and Oriolo G. (Eds.) (2010): Robotics: Modelling, Planning and Control. – Springer Verlag.
 
8.
Siciliano B., Sciavicco L., Villani L., Oriolo G. (2010). Robotics: Modelling, Planning and Control. Springer Verlag.
 
9.
Galicki M. (2004): Path following by the end-effector of a redundant manipulator operating in a dynamic environment. – IEEE Transactions on Robotics, vol.20, No.6, pp.1018-1025.
 
10.
Galicki M. (2004). Path following by the end-effector of a redundant manipulator operating in a dynamic environment IEEE Transactions on Robotics. 20 (6): 1018-1025.
 
11.
Kelly R. and Moreno J. (2005): Manipulator motion control in operational space using joint velocity inner loop. – Automatica, vol.41, No.8, pp.1423-1432.
 
12.
Kelly R., Moreno J. (2005). Manipulator motion control in operational space using joint velocity inner loop Automatica. 41 (8): 1423-1432.
 
13.
Nakanishi J., Cory R., Mistry M., Peters J. and Schaal S. (2008): Operational space control: A theoretical and empirical comparison. – The International Journal of Robotics Research, vol.27, No.6, pp.737-757.
 
14.
Nakanishi J., Cory R., Mistry M., Peters J., Schaal S. (2008). Operational space control: A theoretical and empirical comparison The International Journal of Robotics Research. 27 (6): 737-757.
 
15.
Moreno-Valenzuela J. and Gonzales-Hernandez L. (2011): Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity. – ISA Transactions, vol.50, No.1, pp.131-140.
 
16.
Moreno-Valenzuela J., Gonzales-Hernandez L. (2011). Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity ISA Transactions. 50 (1): 131-140.
 
17.
Tatlicioglu E., Braganza D., Burg T.C. and Dawson D.M. (2008): Adaptive control of redundant robot manipulators with sub-task objectives. – In Proc. ACC, pp.856-860.
 
18.
Tatlicioglu E., Braganza D., Burg T.C., Dawson D.M. (2008). Proc. ACC.
 
19.
Sadeghian H., Keshmiri M., Villani L. and Siciliano B. (2012): Priority oriented adaptive control of kinematically redundant manipulators. – In Proc. IEEE RA, pp.293-298.
 
20.
Sadeghian H., Keshmiri M., Villani L., Siciliano B. (2012). Proc. IEEE RA.
 
21.
Sadeghian H., Villani L., Kesmiri M. and Siciliano B. (2013): Dynamic multi-priority control in redundant robotic systems. – Robotica, vol.31, No.07, pp.1155-1167.
 
22.
Sadeghian H., Villani L., Kesmiri M., Siciliano B. (2013). Dynamic multi-priority control in redundant robotic systems Robotica. 31 (07): 1155-1167.
 
23.
Feng, G. and Palaniswami M. (1993): Adaptive control of robot manipulators in task space. – IEEE Trans. Automat. Contr., vol.38, No.1, pp.100-104.
 
24.
Feng G., Palaniswami M. (1993). Adaptive control of robot manipulators in task space IEEE Trans. Automat. Contr. 38 (1): 100-104.
 
25.
Zergeroglu E., Dawson D.M., Walker I. and Behal A. (2000): Nonlinear tracking control of kinematically redundant robot manipulators. – In Proc. ACC, vol.4, pp.2513-2517.
 
26.
Zergeroglu E., Dawson D.M., Walker I., Behal A. (2000). Nonlinear tracking control of kinematically redundant robot manipulators In Proc. ACC. 4: 2513-2517.
 
27.
Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2005): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – In Proc. CDC, pp.5293-5297.
 
28.
Braganza D., Dixon W.E., Dawson D.M., Xian B. (2005). Proc. CDC.
 
29.
Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2008): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – International Journal of Robotics and Automation, vol.23, No.2, pp.117-126.
 
30.
Braganza D., Dixon W.E., Dawson D.M., Xian B. (2008). Tracking control for robot manipulators with kinematic and dynamic uncertainty International Journal of Robotics and Automation. 23 (2): 117-126.
 
31.
Galicki M. (2007): Adaptive path-constrained control of a robotic manipulator in a task space. – Robotica, vol.25, No.1, pp.103-112.
 
32.
Galicki M. (2007). Adaptive path-constrained control of a robotic manipulator in a task space Robotica. 25 (1): 103-112.
 
33.
Cheah C.C., Liu C. and Slotine J.J. (2006): Adaptive tracking control for robots with unknown kinematic and dynamic properties. – The International Journal of Robotics Research, vol.25, No.3, pp.283-296.
 
34.
Cheah C.C., Liu C., Slotine J.J. (2006). Adaptive tracking control for robots with unknown kinematic and dynamic properties The International Journal of Robotics Research. 25 (3): 283-296.
 
35.
Li X. and Cheah C.C. (2012): Adaptive regional feedback control of robotic manipulator with uncertain kinematics and depth information. – In Proc. ACC, pp.5472-5477.
 
36.
Li X., Cheah C.C. (2012). Proc. ACC.
 
37.
Li, X. and Cheah C.C. (2013): Global task-space adaptive control of robot. – Automatica, vol.49, No.1, pp.58-69.
 
38.
Li X., Cheah C.C. (2013). Global task-space adaptive control of robot Automatica. 49 (1): 58-69.
 
39.
Galicki M. (2013): Inverse-free control of a robotic manipulator in a task space. – Robotics and Autonomous Systems, vol.62, No.2, pp.131-141.
 
40.
Galicki M. (2013). Inverse-free control of a robotic manipulator in a task space Robotics and Autonomous Systems. 62 (2): 131-141.
 
41.
Zuo Z. (2013): Adaptive trajectory tracking control design with command filtered compensation for a quadrotor. – Journal of Vibration and Control, vol.19, No.1, pp.94-108.
 
42.
Zuo Z. (2013). Adaptive trajectory tracking control design with command filtered compensation for a quadrotor Journal of Vibration and Control. 19 (1): 94-108.
 
43.
Zergeroglu E., Sahin H.T., Ozbay U. and Tektas H.A. (2006): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – In Proc. IEEE Control Appl., pp.2860-2865.
 
44.
Zergeroglu E., Sahin H.T., Ozbay U., Tektas H.A. (2006). Proc. IEEE Control Appl.
 
45.
Ozbay U., Sahin H.T. and Zergeroglu E. (2008): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – Robotica, vol.26, No.06, pp.711-728.
 
46.
Ozbay U., Sahin H.T., Zergeroglu E. (2008). Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria Robotica. 26 (06): 711-728.
 
47.
Singh H.P. and Sukavanam N. (2012): Neural network based control scheme for redundant robot manipulators subject to multiple self-motion criteria. – Mathematical and Computer Modelling, vol.55, No.3, pp.1275-1300.
 
48.
Singh H.P., Sukavanam N. (2012). Neural network based control scheme for redundant robot manipulators subject to multiple self-motion criteria Mathematical and Computer Modelling. 55 (3): 1275-1300.
 
49.
Nandhakumar S., Muthukumaran V., Prakash, K.S. and Shunmughanaathan V.K. (2015): Position control of industrial robotic manipulator using variable structure control system with single term Haar wavelet series method. – Journal of Vibration and Control, vol.21, No.12, pp.2465-2483.
 
50.
Nandhakumar S., Muthukumaran V., Prakash K.S., Shunmughanaathan V.K. (2015). Position control of industrial robotic manipulator using variable structure control system with single term Haar wavelet series method Journal of Vibration and Control. 21 (12): 2465-2483.
 
51.
Green A. Sasiadek J.Z. (2004): Dynamics and trajectory tracking control of a two-link robot manipulator. – Journal of Vibration and Control, vol.10, No.10, pp.1415-1440.
 
52.
Green A., Sasiadek J.Z. (2004). Dynamics and trajectory tracking control of a two-link robot manipulator Journal of Vibration and Control. 10 (10): 1415-1440.
 
53.
Seraji H. and Colbaugh R. (1990): Improved configuration control for redundant robots. – J. Robot. Syst., vol.7, No.6, pp.897-928.
 
54.
Seraji H., Colbaugh R. (1990). Improved configuration control for redundant robots J. Robot. Syst. 7 (6): 897-928.
 
55.
Peng Z.X. and Adachi N. (1993): Compliant motion control of kinematically redundant manipulators. – IEEE Trans. Robot. Automat., vol.9, No.6, pp.831-836.
 
56.
Peng Z.X., Adachi N. (1993). Compliant motion control of kinematically redundant manipulators IEEE Trans. Robot. Automat. 9 (6): 831-836.
 
57.
Ott C., Dietrich A. and Schaffer A.A. (2015): Prioritized multi-task compliance control of redundant manipulators. – Automatica, vol.53, pp.416-423.
 
58.
Ott C., Dietrich A., Schaffer A.A. (2015). Prioritized multi-task compliance control of redundant manipulators Automatica. 53: 416-423.
 
59.
Oh Y. and Chung W.K. (1999): Disturbance observer based motion control of redundant manipulators using inertially decoupled dynamics. – IEEE/ASME Trans. Mechatronics, vol.4, No.2, pp.133-146.
 
60.
Oh Y., Chung W.K. (1999). Disturbance observer based motion control of redundant manipulators using inertially decoupled dynamics IEEE/ASME Trans. Mechatronics. 4 (2): 133-146.
 
61.
Colbaugh R. and Glass K. (1995): Robust adaptive control of redundant manipulators. – J. Intell. Robot. Syst., vol.14, No.1, pp.69-88.
 
62.
Colbaugh R., Glass K. (1995). Robust adaptive control of redundant manipulators J. Intell. Robot. Syst. 14 (1): 69-88.
 
63.
Balleieul J. (1985): Kinematic programming alternatives for redundant manipulators. – In Proc. IEEE Int. Conf. on Robotics and Automation, vol.2, pp.722-728.
 
64.
Balleieul J. (1985). Kinematic programming alternatives for redundant manipulators In Proc. IEEE Int. Conf. on Robotics and Automation. 2: 722-728.
 
65.
Shamir T. and Yomdin Y. (1988): Repeatability of redundant manipulators: Mathematical solution of the problem. – IEEE Trans. Automat. Cont., vol.33, No.11, pp.1004-1009.
 
66.
Shamir T., Yomdin Y. (1988). Repeatability of redundant manipulators: Mathematical solution of the problem IEEE Trans. Automat. Cont. 33 (11): 1004-1009.
 
67.
Roberts R.G. and Maciejewski A.A. (1992): Nearest optimal repeatable control strategies for kinematically redundant manipulators. – IEEE Trans. Robot. Automat. vol.8, No.3, pp.327-337.
 
68.
Roberts R.G., Maciejewski A.A. (1992). Nearest optimal repeatable control strategies for kinematically redundant manipulators IEEE Trans. Robot. Automat. 8 (3): 327-337.
 
69.
Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. – New York: Wiley.
 
70.
Spong M.W., Vidyasagar M. (1989). Robot Dynamics and Control. Wiley, New York.
 
71.
Haessing D. and Friedland B. (1991): On the modeling and simulation of friction. – Transactions of the ASME, Journal of Dynamic Systems, Measurements and Control, vol.113, No.3, pp.354-362.
 
72.
Haessing D., Friedland B. (1991). On the modeling and simulation of friction Transactions of the ASME, Journal of Dynamic Systems, Measurements and Control. 113 (3): 354-362.
 
73.
Wit C., Ollson H., Astrom K. and Lischinsky P. (1995): A new model for control of systems with friction. – IEEE Trans. Automat. Contr., vol.40, No.3, pp.419-425.
 
74.
Wit C., Ollson H., Astrom K., Lischinsky P. (1995). A new model for control of systems with friction IEEE Trans. Automat. Contr. 40 (3): 419-425.
 
75.
Yoshikawa T. (1985): Manipulability of robotic mechanisms. – Int. J. Robotics Res., vol.4, No.2, pp.3-9.
 
76.
Yoshikawa T. (1985). Manipulability of robotic mechanisms Int. J. Robotics Res. 4 (2): 3-9.
 
77.
Maciejewski, A.A. and Klein C.A. (1985): Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. – I. J. Rob. Res., vol.4, No.3, pp.109-117.
 
78.
Maciejewski A.A., Klein C.A. (1985). Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments I. J. Rob. Res. 4 (3): 109-117.
 
79.
Perdereau V., Passi, C. and Drouin, M. (2002): Real-time control of redundant robotic manipulators for mobile obstacle avoidance. – Robotics and Autonomous Systems, vol.41, No.1, pp.41-59.
 
80.
Perdereau V., Passi C., Drouin M. (2002). Real-time control of redundant robotic manipulators for mobile obstacle avoidance Robotics and Autonomous Systems. 41 (1): 41-59.
 
81.
Cruse H. et al. (1990): On the cost functions for the control of the human arm movement. – Biological Cybernetics, vol.62, No.6, pp.519-528.
 
82.
Cruse H., et al. (1990). On the cost functions for the control of the human arm movement Biological Cybernetics. 62 (6): 519-528.
 
83.
Feng Y., Yu, X., and Man Z. (2002): Non-singular terminal sliding mode control of rigid manipulators. – Automatica, vol.38, No.12, pp.2159-2167.
 
84.
Feng Y., Yu X., Man Z. (2002). Non-singular terminal sliding mode control of rigid manipulators Automatica. 38 (12): 2159-2167.
 
85.
Yu S., Yu X., Shirinzadeh B. and Man Z. (2005): Continuous finite-time control for robotic manipulators with terminal sliding mode. – Automatica, vol.41, No.11, pp.1957-1964.
 
86.
Yu S., Yu X., Shirinzadeh B., Man Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode Automatica. 41 (11): 1957-1964.
 
87.
Zhao D., Li S. and Gao F. (2009): A new terminal sliding mode control for robotic manipulators. – International Journal of Control, vol.82, No.10, pp.1804-1813.
 
88.
Zhao D., Li S., Gao F. (2009). A new terminal sliding mode control for robotic manipulators International Journal of Control. 82 (10): 1804-1813.
 
89.
Galicki M. (2016): Constraint finite-time control of redundant manipulators. – Int. J. Robust. Nonlinear Control, http://dx.doi.org/10.1002/rnc.....
 
90.
Galicki M. 2016 Constraint finite-time control of redundant manipulators Int. J. Robust. Nonlinear Control http://dx.doi.org/10.1002/rnc.....
 
91.
Bartolini G., Ferrara A. and Punta E. (2000): Multi-input second-order sliding-mode hybrid control of constrained manipulators. – Dynamics and Control, vol.10, No.3, pp.277-296.
 
92.
Bartolini G., Ferrara A., Punta E. (2000). Multi-input second-order sliding-mode hybrid control of constrained manipulators Dynamics and Control. 10 (3): 277-296.
 
93.
Bartolini G., Ferrara A., Usai E. and Utkin V.I. (2000): On multi-input chattering-free second-order sliding mode control. – IEEE Transactions on Automatic Control, vol.45, No.9, pp.1711-1717.
 
94.
Bartolini G., Ferrara A., Usai E., Utkin V.I. (2000). On multi-input chattering-free second-order sliding mode control IEEE Transactions on Automatic Control. 45 (9): 1711-1717.
 
95.
Bartolini G., Pisano A., Punta E. and Usai E. (2003): A survey of applications of second-order sliding mode control to mechanical systems. – International Journal of Control, vol.76, No.9-10, pp.875-892.
 
96.
Bartolini G., Pisano A., Punta E., Usai E. (2003). A survey of applications of second-order sliding mode control to mechanical systems International Journal of Control. 76 (9-10): 875-892.
 
97.
Ferrara A. and Capisani L.M. (2011): Second order sliding modes to control and supervise industrial robot manipulators. – In. L. Fridman et al. (Eds.): Sliding modes, LNCIS, Lecture Notes in Control and Information Sciences, vol.412, pp.541-567.
 
98.
Ferrara A., Capisani L.M., Fridman L., et al. (2011). Sliding modes, LNCIS, Lecture Notes in Control and Information Sciences. 412: 541-567.
 
99.
Wolovich W.A. and Elliot H. (1984): A computational technique for inverse kinematics. – In Proc. 23rd IEEE Conference on Decision and Control, pp.1359-1363.
 
100.
Wolovich W.A. Elliot H. 1984 A computational technique for inverse kinematics Proc. 23rd IEEE Conference on Decision and Control 1359 1363.
 
101.
Siciliano B. (1990): A closed-loop inverse kinematic scheme for on-line joint-based robot control. – Robotica, vol.8, No.3, pp.231-243.
 
102.
Siciliano B. (1990). A closed-loop inverse kinematic scheme for on-line joint-based robot control Robotica. 8 (3): 231-243.
 
103.
Kelly R. (1996): Robust asymptotically stable visual servoing of planar robots. – IEEE trans. Rob. Automat., vol.12, No.5, pp.759-766.
 
104.
Kelly R. (1996). Robust asymptotically stable visual servoing of planar robots IEEE trans. Rob. Automat. 12 (5): 759-766.
 
105.
Cheah C.C. (2006): On duality of inverse Jacobian and transpose Jacobian in task-space regulation of robots. – In Proc. IEEE Int. Conf. on Robotics and Automation, pp.2571-2576.
 
106.
Cheah C.C. 2006 On duality of inverse Jacobian and transpose Jacobian in task-space regulation of robots In Proc. IEEE Int. Conf. on Robotics and Automation 2571 2576.
 
107.
Cheah C.C., Lee K., Kawamura S. and Arimoto S. (2000): Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing. – In Proc. IEEE Decision and Control, pp.3939-3944.
 
108.
Cheah C.C. Lee K. Kawamura S. Arimoto S. 2000 Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing In Proc. IEEE Decision and Control 3939 3944.
 
109.
Moosavian S.A.A. and Papadopoulos E. (2007): Modified transpose Jacobian control of robotic systems. – Automatica, vol.43, No.7, pp.1226-1233.
 
110.
Moosavian S.A.A., Papadopoulos E. (2007). Modified transpose Jacobian control of robotic systems Automatica. 43 (7): 1226-1233.
 
111.
Canudas de Wit C., Fixot N. and Astrom K.J. (1992): Trajectory tracking in robot manipulators via nonlinear estimated state feedback. – IEEE Trans. Robot. Automat., vol.8, No.1, pp.138-144.
 
112.
Canudas de Wit C., Fixot N., Astrom K.J. (1992). Trajectory tracking in robot manipulators via nonlinear estimated state feedback IEEE Trans. Robot. Automat. 8 (1): 138-144.
 
113.
ElBeheiry E.M., Zaki A. and ElMaraghy W.H. (2003): A unified approach for independent manipulator joint acceleration control and observation. – ASME Dynamic Systems and Control Division, vol.72, No.1, pp.659-666.
 
114.
ElBeheiry E.M., Zaki A., ElMaraghy W.H. (2003). A unified approach for independent manipulator joint acceleration control and observation ASME Dynamic Systems and Control Division. 72 (1): 659-666.
 
115.
Khalil H.K. and Praly L. (2014): High-gain observers in nonlinear feedback control. – Int. J. Robust and Nonlinear Control, vol.24, No.6, pp.993-1015.
 
116.
Khalil H.K., Praly L. (2014). High-gain observers in nonlinear feedback control Int. J. Robust and Nonlinear Control. 24 (6): 993-1015.
 
117.
Ball A.A. and Khalil H.K. (2013): A nonlinear high-gain observer for systems with measurement noise. – IEEE Trans. Automat. Control, vol.58, pp.569-580.
 
118.
Ball A.A., Khalil H.K. (2013). A nonlinear high-gain observer for systems with measurement noise IEEE Trans. Automat. Control. 58: 569-580.
 
119.
De Luca A., Schroder D. and Thummel M. (2007): An acceleration-based state observer for robot manipulators with elastic joints. – In Proc. IEEE International Conference on Robotics and Automation, pp.3817-3823.
 
120.
De Luca A. Schroder D. Thummel M. 2007 An acceleration-based state observer for robot manipulators with elastic joints In Proc. IEEE International Conference on Robotics and Automation 3817 3823.
 
121.
Hsiao T. and Weng M.C. (2013): Robust joint position feedback control of robot manipulators. – J. Dynam. Syst., Measurement, and Control, 135, 10.1115/1.4023669.
 
122.
Hsiao T., Weng M.C. (2013). Robust joint position feedback control of robot manipulators J. Dynam. Syst., Measurement, and Control. : 135. doi:10.1115/1.4023669.
 
123.
Davila J., Fridman L. and Levant A. (2005): Second-order sliding mode observer for mechanical systems. – IEEE Trans. Automat. Control, vol.50, No.11, pp.1785-1789.
 
124.
Davila J., Fridman L., Levant A. (2005). Second-order sliding mode observer for mechanical systems IEEE Trans. Automat. Control. 50 (11): 1785-1789.
 
125.
Atasi A.N. and Khalil H.K. (2000): Separation results for the stabilization of nonlinear systems using different high-gain observer designs. – Systems and Control Letters, vol.39, No.3, pp.183-191.
 
126.
Atasi A.N., Khalil H.K. (2000). Separation results for the stabilization of nonlinear systems using different high-gain observer designs Systems and Control Letters. 39 (3): 183-191.
 
127.
Levant A. and Livne M. (2012): Exact differentiation of signals with unbounded higher derivatives. – IEEE Transactions on Automatic Control, vol.57, No.4, pp.1076-1080.
 
128.
Levant A., Livne M. (2012). Exact differentiation of signals with unbounded higher derivatives IEEE Transactions on Automatic Control. 57 (4): 1076-1080.
 
129.
Levant A. (2003): Higher-order sliding modes, differentiation and output-feedback control. – International Journal of Control, vol.76, No.9-10, pp.924-941.
 
130.
Levant A. (2003). Higher-order sliding modes, differentiation and output-feedback control International Journal of Control. 76 (9-10): 924-941.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top