ORIGINAL PAPER
Role of suction/injection on electromagnetohydrodynamics natural convection flow in a porous microchannel with electroosmotic effect
More details
Hide details
1
Department of Mathematics, Ahmadu Bello University
2
Department of Mathematics,, Ahmadu Bello University
Submission date: 2023-06-16
Acceptance date: 2023-09-28
Online publication date: 2023-12-19
Publication date: 2023-12-23
Corresponding author
Michael Oni
Department of Mathematics, Ahmadu Bello University, Zaria
International Journal of Applied Mechanics and Engineering 2023;28(4):94-113
KEYWORDS
TOPICS
ABSTRACT
This paper examined the role of suction/injection on time-dependent electromagnetohydrodynamics (EMHD) natural (free) convection flow in a vertical microchannel with electroosmotic effect. With the aid of Laplace transformation method, the governing energy and momentum equations are converted from partial differential equation (PDE) into ordinary differential equation (ODE) to obtain fluid temperature and velocity in Laplace domain. The semi-analytical solutions of the velocity profile and temperature distribution have been derived using the Riemann sum approximation. After which a MATLAB program was written to study the effects of Prandlt number Pr, Hartmann number Ha, electric field strength on x and z directions (Ex and Sz) and Grashof number Gr in fluid velocity, temperature, skin-friction and mass flow rate in terms of line graphs. Result shows the role of suction/injection parameter alters the temperature distribution and velocity profile, so also how effective the governing parameters contribute to the flow formation. .
REFERENCES (49)
1.
Cramer K.R. and Pai S.I. (1973): Magnetofluid Dynamics for Engineers and Applied Physicists.– McGraw-Hill Book Company, vol.5, No.17.
2.
Jang J. and Lee S.S. (2000): Theoretical and experimental study of MHD (magnetohydrodynamics) micropump.– Elsavier, vol.80, No.1, pp.84-89.
3.
Davidson P.A (2001): An Introduction to Magnetohydrodynamics.– Cambridge U. Press., vol.70, No.7, pp.431.
4.
Li D. (2008): Encyclopedia of Microfluidics and Nanofluidics.– Springer.
5.
Mitra S., Maity S., Sutradhar S. and Bandyopadhyay D. (2020): Electroosmosis with augmented mixing in rigid to flexible microchannels with surface pattern.– Ind. Eng. Chem., vol.59, No.9, pp.3717-3792.
6.
Lemoff A.V. and Lee A.P. (2000): An AC magnetohydrodynamic micropump.– Sens. Actuator B-Chem., vol.63, No.3, pp.178-185.
7.
Chakraborty S. and Paul D. (2006): Microchannel flow control through a combined electromagnetohydrodynamic transport.– J. Phys. D-Appl. Phys., vol.39, No.24, pp.53-64.
8.
Sarkar S and Ganguly S. (2015): Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field.– Microfluid and Nanofluid, vol.18, pp.623-36.
9.
Buren M., Jian Y.J. and Chang L. (2014): Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls.– J. Phys. D-Appl. Phys., vol.47, No.42, pp.5501.
10.
Moghaddam S. (2013): MHD micropumping of power-law fluids: a numerical solution.– Korea-Aust. Rheol., vol.25, pp.29-37.
11.
Xie Z.Y. and Jian Y.J. (2017): Rotating electromagnetohydrodynamic flow of power-law fluids through a microparallel channel.– Colloid Surf. A-Physicochem. Eng. Asp., vol.529, pp.334-45.
12.
Gravesen P., Branebjerg J. and Jensen O.S. (1993): Microfludics-a review.– J. Micromech and Microeng, vol.3, pp.168-182.
13.
Yang C., Ooi K., Wong T. and Masliyah J.H. (2004): Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.– J. Colloid and Interface Sci., vol.275, No.2, pp.679-698.
14.
Luo W.J., Pan Y.J. and Yang R.J. (2004): Transient analysis of electro-osmotic secondary flow induced by dc or ac electric field in a curved rectangular microchannel.– J. Micromech. Microeng., vol.5, pp.463-473.
15.
Liu Q., Jian Y., and Yang L. (2011): Time periodic electroosmotic flow of Maxwell fluids between two micro-parallel plates.– J. Non-Newtonian Mech., vol.166, No.9-10, pp.478-486.
16.
Oni M.O and Jha B.K. (2020): Electroosmotic natural convection flow in a vertical microchannel with asymmetric heat fluxes.– A Springer Nature Journal,
https://doi.org/10.1007/s42452....
17.
Ghosal S. (2004): Fluid mechanics of electroosmotic flow and its effect on band boarding in capillary electrophroresis.– Electrophoresis, vol.25, No.2, pp.214-228.
18.
Xuan X. (2008): Joule heating in electrokinetic flow.– Electrophoresis, vol.29, No.1, pp.33-43.
19.
Wang X., Qiao Y., Qi H. and Xu H. (2021): Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.– Electrophoresis, vol.42, No.21-22, pp.2347-2355.
20.
Yang J. and Kwok D.Y. (2004): Analytical treatment of electrokinetic microfluidics in hydrophobic microchannels.– Anal. Chim. Acta., vol.507, No.1, pp.39-53.
21.
Kang Y., Ooi K.T., Yang C. and Wong T.N. (2005): Frequency-dependent velocity and vorticity fields of electro-osmotic flow in a closed-end cylindrical microchannel.– J. Micromech and Microeng., vol.15, pp.301-312.
22.
Jayaraj S., Kang S. and Suh Y.K. (2007): A review on the analysis and experiment of fluid flow and mixing in micro-channels.– J. Mech. Sci. Technol., vol.21, pp.536-548.
23.
Chakraborty S. and Paul D. (2006): Microchannel flow control through a combined electro-magneto-hydro-dynamic transport.– J. Phys. D. Appl. Phys., vol.39, No.24, pp.5364-5371.
24.
Jang J. and Lee S.S. (2000): Theoretical and experimental study of MHD (magnetohydrodynamic) micropump.– Sens. Actuators A Phys., vol.80, No.1, pp.84-89.
25.
Jian Y., Si D., Chang L. and Liu Q. (2015): Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel plates.– Chem. Eng. Sci., vol.134, pp.12-22.
26.
Ganguly S., Sarkar S., Hota T.K. and Mishra M. (2015): Thermally developing combined electroosmotic and pressure-driven flow of in a microchannel under the effect of magnetic field.– Chem. Eng. Sci.,vol.126, pp.10-21.
27.
Mirza I.A., Abdulhameed M., Vieru D. and Shafie S. (2016): Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.– Comput. Methods Programs Biomed., vol.137, pp.149-166.
28.
Tso C.P. and Sundaravadivelu K. (2001): Capillary flow between parallel plates in the presence of an electromagnetic field.– J. Phys. D Appl Phys., vol.34, pp.3522-3527.
29.
Duwairi H. and Abdullah M. (2006): Thermal and flow analysis of a magneto-hydrodynamic micropump.– Microsyst. Technol., vol.13, pp.33-39.
30.
Shit G.C., Mondal A., Sinha A. and Kundu P.K (2016): Electro-osmotically driven MHD flow and heat transfer in micro-channel.– Phys. A Stat. Mech. Its. Appl., vol.449, pp.437-454.
31.
Kiyasatfar M. and Pourmahmoud N. (2016): Laminar MHD flow and heat transfer of power-law fluids in square microchannels.– Int. J. Therm. Sci., vol.99, pp.26-35.
32.
Liu Y., Jian Y. and Tan W. (2018): Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel.– Int. J. Heat Mass Transf., vol.127, pp.901-913.
33.
Mondal A., Mandal P.K., Weigand B. and Nayak A.K. (2020): Entropic and heat-transfer analysis of EMHD flows with temperaturedependent properties.– Fluid Dyn. Res.,vol.52, No.6, pp.065503.
34.
Sheikholeslami M. and Ganji D.D. (2016): Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect.– J. Mol. Liq., vol.224, pp.526-537.
35.
Dogonchi A.S. and Ganji D.D. (2016): Thermal radiation effect on the Nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion.– J. Mol. Liq., vol.223, pp.521-527.
36.
Mahapatra B. and Bandopadhyay A. (2021): Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces.– Phys. Fluids., vol.33, No.1. p.35.
37.
Labroopulu F., Dorrepael J.M. and Chandna O.P. (1996): Oblique flow impinging on a wall with suction or blowing.– Acta Mech., vol.115, pp.15-25.
38.
Attia A. (2010): The effect of suction and injection on unsteady Couette flow with variable properties.– Kragujevac J Sci., vol.32, pp.17-24.
39.
Ahmed S. and Khatun H. (2013): Magnetohydrodynamic oscillatory flow in a planer porous channel with suction and injection.– Int. J. Eng. Res. Techno., vol.2, No.11, pp.1024-1029.
40.
Magyari E. and Chamkha A.J. (2010): Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: the full analytical solution.– Int. J. Therm. Sci., vol.49, No.9, pp.1821-1828.
41.
Rundora L. and Makinde O.D. (2013): Effect of suction/injection on unsteady reactive variable viscosity non-Newtonian fluid flow in a channel filled with porous medium and convective boundary conditions.– J. Petrol. Sci. Eng., vol.108, pp.328-335.
42.
Hamid R.A., Arifin MdN. and Nazar R. (2013): Effect of radiation Joule heating and viscous dissipation on MHD Marangoni convection over a flat surface with suction and injection.– World Appl. Sci. J., vol.21, pp.933-938.
43.
Ghasemi S.E., Hatami M. and Ahangar G.H.R.M. (2014): Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method.– J. Electrostat., vol.72, No.1, pp.47-52.
44.
Ravindran R. and Ganpathirao M. (2013): Non-uniform slot suction/injection into mixed convection boundary layer flow over vertical cone.– Appl. Math. Mech., vol.34, pp.1327-38.
45.
Kundu B. and Saha S. (2022): Review and analysis of electro-magnetohydrodynamic flow and heat transport in microchannels.– Energies, pp.21-24.
46.
Jha B.K. and Apere C.A. (2010): Unsteady MHD Couette flow in an annuli: the Riemann-sum approximation approach.– J. Phy. Soc. Jpn., vol.79, No.12, pp.124403-124408.
47.
Jha B.K and Oni M.O. (2018): An analytical solution for temperature field around a cylindrical surface subjected to a time dependent heat flux: an alternative approach.– Alexandr. Eng. J., vol.57, No.2, pp.927-929.
48.
Khadrawi A.F. and Al-Nimr M.A. (2007): Unsteady natural convection fluid flow in a vertical microchannel under the effect of the dual-phase-lag heat conduction model.– Int. J. Thermophys, vol.28, pp.1387-1400.
49.
Tzou D.Y. (1995): A unified field approach for heat conduction from macro- to micro-scales.– J. Heat Transfer, vol.117, No.2, pp.8-16.