ORIGINAL PAPER
Scattering of Oblique Water Waves by an Infinite Step
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Prasannadeb Women’s College, Jalpaiguri-, 735101, West Bengal, India
 
2
River Research Institute, West Bengal, Haringhata Central Laboratory, Mohanpur, Nadia, Pin-, 741246, India
 
 
Online publication date: 2018-06-04
 
 
Publication date: 2018-05-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(2):327-338
 
KEYWORDS
ABSTRACT
The present paper is concerned with the problem of scattering of obliquely incident surface water wave train passing over a step bottom between the regions of finite and infinite depth. Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain very accurate numerical estimates for reflection and transmission coefficients. The numerical results are illustrated in tables.
REFERENCES (20)
1.
Dean W.R. (1945): On the reflection of surface waves by a submerged plane barrier. – Proc. Camb. Phil. Soc., vol.41, pp.231-238.
 
2.
Ursell F. (1947): The effect of a fixed barrier on surface waves in deep water. – Proc. Camb. Phil. Soc., vol.43, pp.374-382.
 
3.
Evans D.V. (1970): Diffraction of water waves by a submerged vertical plate. – J. Fluid Mech., vol.40, pp.433-451.
 
4.
Porter D. (1972): The transmission of surface waves through a gap in a vertical barrier. – Proc. Camb. Phil. Soc., vol.71, pp.411-422.
 
5.
Mandal B.N. and Dolai D.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth. – Appl. Ocean Res., vol.16, pp.195-203.
 
6.
Roseau M. (1976): Asymptotic wave theory. – North Holland, pp.311-347.
 
7.
Kreisel G. (1949): Surface waves. – Quart. Appl. Math., vol.7, pp.21-44.
 
8.
Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. – Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89.
 
9.
Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. – J. Fluid Mech., vol.83, pp.289-310.
 
10.
Newman J.N. (1965): Propagation of water waves over an infinite step. – J. Fluid Mech., vol.23, pp.399-415.
 
11.
Miles J.W. (1967): Surface wave scattering matrix for a shelf. – J. Fluid Mech., vol.28, pp.755-767.
 
12.
Mandal B.N. and Gayen, Rupanwita (2006): Water wave scattering by bottom undulations in the presence of a thin partially immersed barrier. – Appl. Ocean Res. vol.28, pp.113-119.
 
13.
Dolai D.P. and Dolai P. (2010): Interface wave diffraction by bottom undulations in the presence of a thin plate submerged in lower fluid. – Int. J. Appl. Mech. and Engg. vol.15, pp.1017-1036.
 
14.
Stoker J.J. (1957): WaterWwaves. – New York: Interscience.
 
15.
Wehausen J.V. and Laiton E.V. (1960): Surface Waves. – Handbuch der Physik: Springer.
 
16.
Bartholomeusz E.F. (1958): The reflection of long waves at a step. – Proc. Camb. Phil. Soc., vol.54, pp.106-118.
 
17.
Evans D.V. and McIver P. (1984): Edge waves over a shelf: full linear theory. – J. Fluid Mech., vol.142, pp.79-95.
 
18.
Havelock T.H. (1929): Forced surface waves on water. – Phil. Mag., vol.8, pp.569-576.
 
19.
Kanoria M., Dolai D.P. and Mandal B.N. (1999): Water wave scattering by thick vertical barriers. – J. Eng. Math., vol.35, pp.361-384.
 
20.
Dolai P. (2017): Oblique water wave diffraction by a step. – Int. J. Appl. Mech. and Engg., vol.22, pp.35-47.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top