ORIGINAL PAPER
Similarity Solution of Stagnation-Point Flow and Heat Transfer of a Micropolar Fluid Towards a Horizontal Permeable Exponentially Elongating Sheet with Radiation, Heat Production/ Immersion
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Government Arts College for Men, Affiliated to University of Madras, Chennai, India
 
2
Department of Mathematics, Dr. Ambedkar Govt. Arts College, Affiliated to University of Madras, Chennai, India
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):179-191
 
KEYWORDS
ABSTRACT
The current study aims to explore stagnation spot flow of a micropolar fluid about a plain linear exponentially expanding penetrable surface in the incidence of radiation and in-house heat production/immersion. Through similarity mapping, the mathematical modeling statements are transformed to ODE’s and numerical results are found by shooting techniques. The impact of varying physical constants on momentum, micro-rotation and temperature is demonstrated through graphs. The computed measures including shear, couple stress, mass transfer and the local surface heat flux with distinct measures of factors involved in this proposed problem are presented through a table.
REFERENCES (38)
1.
Eringen A.C. (1966): Theory of micropolar fluids.– J. Math. Mech., vol.16, pp.1-18.
 
2.
Mukhopadhyay S. (2013): Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation.– Ain Shams Eng. J., vol.4, pp.485-491.
 
3.
Mukhopadhyay S., Layek G.C. and Gorla R.S.R. (2007): MHD combined convective flow and heat transfer past a porous stretching surface.– Int. J. Fluid Mech. Res., vol.34, pp.244-257.
 
4.
Mahapatra Ray T., Dholey S. and Gupta A.S. (2007): Oblique stagnation-point flow of an incompressible visco-elastic fluid towards a stretching surface.– Int. J. Non-Linear Mech., vol.42, pp.484-499.
 
5.
Mukhopadhyay S. and Gorla R.S.R. (2012): Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation.– Heat Mass Transfer, vol.48, pp.1773–1781.
 
6.
Crane L.J. (1970): Flow past a stretching plate.– Z Angew Math Phys., vol.21, pp.64-67.
 
7.
Carragher P. and Crane L.J. (1982): Heat transfer on a continuous stretching sheet.– Z. Angew. Math. Mech., vol.62, p.564.
 
8.
Gupta P.S. and Gupta A.S. (1977): Heat and mass transfer on a stretching sheet with suction or blowing.– Can. J. Chem. Eng., vol.55, pp.744-746.
 
9.
Chakrabarti A., Gupta A.S. (1979): Hydromagnetic flow and heat transfer over a stretching sheet.– Quart. Appl. Math., vol.33, pp.73-78.
 
10.
Hady F.M. (1996): Short communication on the solution of heat transfer to micropolar fluid from a non-isothermal stretching sheet with injection.– Int. J. Num. Meth. Heat Fluid Flow, vol.6, pp.99-104.
 
11.
Hassanien I.A. and Gorla R.S.R. (1990): Heat transfer to a micropolar fluid from a non isothermal stretching sheet with suction and blowing.– Acta Mech., vol.84, pp.191-199.
 
12.
Hayat T., Abbas Z. and Javed T. (2008): Mixed convection flow of a micropolar fluid over a non- linear stretching sheet.– Phys. Lett. A., vol.372, pp.637-647.
 
13.
Chen C.K. and Char M.I. (1988): Heat transfer of a continuous stretching surface with suction or blowing.– J. Math. Anal. Appl., vol.135, pp.568-580.
 
14.
Datta B.K., Roy P. and Gupta A.S. (1985): Temperature field in the flow over a stretching sheet with uniform heat flux.– Int. Comm. Heat Mass., Tran. 12, 89-94.
 
15.
Vajravelu K. (1994): Convection heat transfer at a stretching sheet with suction or blowing.– J. Math. Anal. Appl., vol.188, No.3, pp.1002-1011.
 
16.
Mukhopadhyay S., Mandal I.C. and Gorla R.S.R. (2012): Effects of thermal stratification on flow and heat transfer past a porous vertical stretching surface.– Heat Mass Transfer, vol.48, pp.915-921.
 
17.
Ishak A., Nazar R. and Pop I. (2008): Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet.– Heat Mass Transfer., vol.44, pp.921-927.
 
18.
Van Gorder R.A. and Vajravelu K. (2009): A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet.– Arch. Appl. Mech. vol.80, pp.1329-1332.
 
19.
Mukhopadhyay S. (2013): Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at the boundary.– Alex Eng. J., vol.52, pp.563-569.
 
20.
Vajravelu K. and Rollins D. (1992): Heat transfer in electrically conducting fluid over a stretching sheet.– Int. J. Non-linear Mech., vol.27, pp.265-277.
 
21.
Mahmoud M.A.A. and Waheed S.E. (2012): MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity.– Journal of the Egyptian Mathematical Society., vol.20, pp.20-27.
 
22.
Magyari E. and Keller B. (1999): Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface.– J. Phys. D Appl. Phys., vol.32, pp.577-585.
 
23.
Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction.– Arch. Mech., vol.53, pp.643-651.
 
24.
Sajid M. and Hayat T. (2008): Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet.– Int. Comm. Heat Mass Tran., vol.35, pp.347-356.
 
25.
Bidin B. and Nazar R. (2009): Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation.– Eur. J. Sci. Res., vol.33, No.4, pp.710-717.
 
26.
Pal D. (2010): Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field.– Appl. Math. Comput., vol.217, pp.2356-2369.
 
27.
Ishak A. (2011): MHD boundary layer flow due to an exponentially stretching sheet with radiation effect.– Sains Malaysiana., vol.40, pp.391-395.
 
28.
Schlichting H. (1960): Boundary Layer Theory.– McGraw-Hill.
 
29.
Goldstein S. (1938): Modern Development in Fluid Dynamics.– Oxford University Press, London.
 
30.
Maiti M.K. (1965): Axially-symmetric stagnation point flow of power law fluids.– Z. Angew. Math. Phys., vol.16, pp.594-598.
 
31.
Koneru S.R. and Manohar R. (1968): Stagnation point flows of non-Newtonian power law fluids.– Z. Angew. Math. Phys., vol.19, pp.84-88.
 
32.
Mahapatra T.R and Gupta A.S. (2002): Heat transfer in stagnation-point flow towards a stretching sheet.– Heat Mass Transfer., vol.38, pp.517-521.
 
33.
Stuart J.T. (1959): The viscous flow near a stagnation point when the external flow has uniform vorticity.– J. Aerospace Sci., vol.26, pp.124-125.
 
34.
Nazar R., Amin N., Filip D. and Pop I. (2004): Stagnation point flow of a micropolar fluid towards a stretching sheet.– Int. J. Non-Linear Mech., vol.39, pp.1227-35.
 
35.
Kai-Long Hsiao (2010): Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet.– Heat Mass Transfer., vol.46, pp.413-419.
 
36.
Alavi S.Q., Abid Hussanan A., Kasim A.R.M., Rosli N. and Salleh M.Z. (2017): MHD stagnation point flow towards an exponentially stretching sheet with prescribed wall temperature and heat flux.– Int. J. Appl. Comput. Math., vol.3, pp3511-3523.
 
37.
Mukhopadhyay S. (2013): Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation.– Ain Shams Eng. J., vol.4, No.3, pp.485-491.
 
38.
Chaudhary S., Singh S. and Chaudhary S. (2015): Thermal radiation effects on MHD boundary layer flow over an exponentially stretching surface.– Applied Mathematics., vol.6, pp.295-303.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top