ORIGINAL PAPER
Simple Flows of Pseudoplastic Fluids Based on Dehaven Model
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering ul. Szafrana 4, 65-516 , Zielona Góra, POLAND
 
 
Online publication date: 2017-12-09
 
 
Publication date: 2017-12-20
 
 
International Journal of Applied Mechanics and Engineering 2017;22(4):1035-1044
 
KEYWORDS
ABSTRACT
In this paper three simple flows of visco-plastic fluids of DeHaven type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow through a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation DeHaven model it was presented some models of fluids similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.
REFERENCES (17)
1.
Ellis S.B.: Thesis, Lafayette College, Pa, 1927. Citted in: Matsuhisa S., Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. - AiChE Journal, vol.11, No.4, pp.588-595.
 
2.
Kraemer E.O. and Williamson R.V. (1929): Internal friction and the structure of „solvated” colloids. - J. Rheology, vol.1, No.1, pp.76-92.
 
3.
Rabinowitsch B. (1929): Über die Viskosität und Elastizität von Solen (On the viscosity and elasticity of sols). - Zeit. Phys. Chem., A145, pp.1-26.
 
4.
DeHaven E.S. (1959): Control valve design for viscous pseudoplastic fluids. - JEC Equipment and Design, vol.51, No.7, pp.63A-66A.
 
5.
DeHaven E.S. (1959): Extruder design for pseudoplastic fluids. - Ind. Eng. Chem., vol.51, No.7, pp.813-816.
 
6.
Ellis S.C., Lanham A.F. and Pankhurst K.G.A. (1967): A rotational viscometer for surface films. - J. Sci. Instr., vol.32, pp.70-73.
 
7.
Rotem Z. and Shinnar R. (1961): Non-Newtonian flow between parallel boundaries in linear movements. - Chem. Eng. Sci., vol.15, pp.130-143.
 
8.
Rotem Z. and Shinnar R. (1962): Non-Newtonian flow between parallel boundaries in linear movement. - II . Non-Isothermal Flow. Chem. Eng. Sci., vol.17, pp.53-62.
 
9.
Whorlow R.W. (1992): Rheological Techniques (Sec. Edition). - New York: Ellis Horwood.
 
10.
Walicka A., Jurczak P. and Falicki J. (2017): Curvilinear squeeze film bearing lubricated with a DeHaven fluid or with similar fluids. - Int. J. of Applied Mechanics and Engineering, vol.22, No.3, pp.697-715.
 
11.
Walicka A. (2017): Rheology of fluids in Mechanical Engineering. - Zielona Góra: University Press.
 
12.
Matsuhisa S. and Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. - A.I.Ch. Journal, vol.11, No.4, pp.588-595.
 
13.
Wadhwa Y.D. (1996): Generalized Couette flow of an Ellis fluid. AIChE Journal, vol.12, No.5, pp.890-893.
 
14.
Kheyfets V.O. and Kieweg S.L. (2013): Gravity-driven thin film flow of an Ellis fluid. - J. Non-Newtonian Fluid Mech., vol.202, No.1, pp.88-98.
 
15.
Walicka A., Walicki E., Jurczak P. and Falicki J. (2014): Thrust bearing with rough surfaces lubricated by an Ellis fluid. - Int. J. Appl. Mech. Eng., vol.19, No.4, pp.809-822.
 
16.
Walicka A., Walicki E., Jurczak P. and Falicki J. (2016): Curvilinear squeeze film bearing with rough surfaces lubrcated by a Rabinowitsch-Rotem-Shinnar fluid. - Appl. Math. Modell., vol.40, pp.7916-7927.
 
17.
Schramm G. (1994): A Practical Approach to Rheology and Rheometry. - Karlsruhe: Haake.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top