ORIGINAL PAPER
Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes
,
 
 
 
More details
Hide details
1
Department of Civil Engineering Indian Institute of Technology Roorkee, Roorkee-247 667, INDIA
 
 
Online publication date: 2017-06-09
 
 
Publication date: 2017-05-24
 
 
International Journal of Applied Mechanics and Engineering 2017;22(2):333-347
 
KEYWORDS
ABSTRACT
A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.
 
REFERENCES (16)
1.
Chang F.K. and Chang K.Y. (1987): A progressive damage model for laminated composites containing stress concentrations. - J. Compos. Mater., vol.21, No.9, pp.834-855.
 
2.
Icten B.M. and Karakuzu R. (2002): Progressive failure analysis of pin-loaded carbon - epoxy woven composite plates. - Compos. Sci. Technol., vol.62, No.9, pp.1259-1271.
 
3.
Chang F.K. and Lessard L.B. (1991): Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: part I - analysis. - J. Compos. Mater., vol.25, No.1, pp.2-43.
 
4.
Lessard L.B. and Shokrieh M.M. (1995): Two-dimensional modeling of composite pinned-joint failure. - J. Compos. Mater., vol.29, No.5, pp. 671-697.
 
5.
Shahid I. and Chang F.K. (1995): An accumulative damage model for tensile and shear failures of laminated composite plates. - J. Compos. Mater., vol.29, No.7, pp.926-981.
 
6.
Su Z.C., Tay T.E., Ridha M. and Chen B.Y. (2015): Progressive damage modeling of open-hole composite laminates under compression. - Compos. Struct., vol.122, pp.507-517.
 
7.
Kwon Y.W. and Liu C.T. (1997): Study of damage evolution in composites using damage mechanics and micromechanics. - Compos. Struct., vol.38, No.1-4, pp.133-139.
 
8.
Camanho P.P., Maimí P. and Dávila C.G. (2007): Prediction of size effects in notched laminates using continuum damage mechanics. - Compos. Sci. Technol., vol.67, No.13, pp.2715-2727.
 
9.
Liu P.F. and Zheng J.Y. (2008): Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. - Mater. Sci. Eng. A., vol.485, No.1-2, pp.711-717.
 
10.
Sosa J.C., Phaneendra S. and Munoz J. (2012): Modelling of mixed damage on fibre reinforced composite laminates subjected to low velocity impact. - Int. J. Damage Mech., vol.22, No.3, pp.1-19.
 
11.
Dassault Systemes Simulia Corp. (2012): Abaqus 6.12 analysis user ׳s manual. - Dassault Systemes Simulia Corp., Providence, RI, USA.
 
12.
Hashin Z. (1980): Failure criteria for unidirectional fibre composites. - J. Appl. Mech., vol.47, No.2, pp.329-334.
 
13.
Naderi M. and Maligno A.R. (2012): Fatigue life prediction of carbon/epoxy laminates by stochastic numerical simulation. - Compos. Struct., vol.94, No.3, pp.1052-1059.
 
14.
Reddy Y.S.N., Moorthy C.M.D. and Reddy J.N. (1995): Non-linear progressive failure analysis of laminated composite plates. - Int. J. Non. Linear. Mech., vol.30, No.5, pp.629-649.
 
15.
Chen J.F., Morozov E.V. and Shankar K. (2014): Simulating progressive failure of composite laminates including in-ply and delamination damage effects. - Compos. Part A Appl. Sci. Manuf., vol.61, pp.185-200.
 
16.
Lian W. and Yao W. (2010): Fatigue life prediction of composite laminates by FEA simulation method. - Int. J. Fatigue., vol.32, No.1, pp.123-133.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top