ORIGINAL PAPER
Start-off MHD electrokinetic Couette flow in an annulus: A Riemann-sum approximation approach
More details
Hide details
1
Department of Mathematics, Ahmadu Bello University
2
Mathematics, Ahmadu Bello University
3
ICT, Nigerian Institute of Transport Technology
Submission date: 2024-02-01
Final revision date: 2024-03-16
Acceptance date: 2024-06-24
Publication date: 2024-09-12
Corresponding author
Michael Oni
Department of Mathematics, Ahmadu Bello University, Zaria
International Journal of Applied Mechanics and Engineering 2024;29(3):82-100
KEYWORDS
TOPICS
ABSTRACT
The time dependent Couette flow of an electrically conducting fluid in a horizontal annulus in the presence of electric potential and accelerated motion of the outer cylinder is investigated. The governing electric field potential as well as the momentum equations are obtained from Poisson–Boltzmann and Navier-Stokes equations respectively. As a promising tool for solving time-dependent problems, the Laplace transform technique is used to obtain analytical solution for electric field and velocity profile in Laplace domain. Using the Riemann-sum approximation simulation, the results are obtained numerically in time-domain. In the course of numerical and graphical representations of results, it is found that the magnitude of electrokinetic effect as well as Debye-Hückel parameter play important role in flow formation and mass flow rate in the horizontal annulus. Further, velocity, skin-friction and mass flow-rate decrease with increase in Debye-Hückel parameter at all-time regardless of the mode of application of magnetic field. In addition, mass flow-rate can be enhanced with increasing Hartmann number when the magnetic field fixed relative to the moving cylinder.
REFERENCES (30)
1.
Wall S. (2010): The history of electrokinetic phenomena.– Current Opinion in Colloid & Interface Science, vol.15, No.3, pp.119-124.
2.
Karniadakis G., Beskok A. and Aluru N. (2005): Microflows and Nanoflows: Fundamentals and Simulation.– Springer, New York, pp.231.
3.
Chang L., Jian Y., Buren M., Liu Q. and Sun Y. (2016): Electroosmotic flow through a microtube with sinusoidal roughness.– Journal of Molecular Liquids, vol.220, pp.258-264.
4.
Rojas G., Arcos J., Peralta M., Méndez F. and Bautista O. (2017): Pulsatile electroosmotic flow in a microcapillary with the slip boundary condition.– Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.513, pp.57-65.
5.
Probstein R.F. (2005): Physicochemical Hydrodynamics: An Introduction.– John Wiley & Sons, pp.342.
6.
Laser D.J. and Santiago J.G. (2004): A review of micropumps.– Journal of Micromechanics and Microengineering, vol.14, No.6, pp.35.
7.
Chakraborty J., Ray S. and Chakraborty S. (2012): Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices.– Electrophoresis vol.33, pp.419-425.
8.
Chakraborty S. and Ray S. (2008): Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels.– Physics of Fluids, vol.20, No.8, pp.1-11.
9.
Kirby B.J. and Hasselbrink Jr E.F. (2004): Zeta potential of microfluidic substrates: 2. Data for polymers.– Electrophoresis, vol.25, No.2, pp.203-213.
10.
Wang C.Y., Liu Y.H. and Chang C.C. (2008): Analytical solution of electro-osmotic flow in a semicircular microchannel.– Physics of Fluids, vol.20, No.6, pp.1-6.
11.
Jian Y., Yang L. and Liu Q. (2010): Time periodic electro-osmotic flow through a microannulus.– Physics of Fluids, vol.22, No.4, pp.1-7.
12.
Khaki M., Taeibi-Rahni M. and Ganji D.D. (2012): Analytical solution of electro-osmotic flow in rectangular nano-channels by combined sine transform and MHPM.– Journal of Electrostatics, vol.70, No.5, pp.451-456.
13.
Arulanandam S. and Li D. (2000): Liquid transport in rectangular microchannels by electroosmotic pumping.– Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.161, No.1, pp.89-102.
14.
Katagiri M. (1962): Flow formation in Couette motion in magnetohydrodynamics.– Journal of the Physical Society of Japan, vol.17, No.2, pp.393-396.
15.
Muhuri P. (1963): Flow formation in Couette motion in magnetohydrodynamics with suction.– Journal of the Physical Society of Japan, vol.18, No.11, pp.1671-1675.
16.
Singh A.K. and Kumar N. (1983): Unsteady magnetohydrodynamic Couette flow.– Wear, vol.89, No.2, pp.125-129.
17.
Globe S. (1959): Laminar steady‐state magnetohydrodynamic flow in an annular channel.– The Physics of Fluids, vol.2, No.4, pp.404-407.
18.
Jha B.K. and Oni M.O. (2018): Impact of mode of application of magnetic field on rate of heat transfer of rarefied gas flows in a microtube.– Alexandria Engineering Journal, vol.57, No.3, pp.1955-1962.
19.
Jha B.K., Aina B. and Isa S. (2015): Fully developed MHD natural convection flow in a vertical annular microchannel: an exact solution.– Journal of King Saud University-Science, vol.27, No.3, pp.253-259.
20.
Jha B.K. and Aina B. (2016): Role of induced magnetic field on MHD natural convection flow in vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates.– Alexandria Engineering Journal, vol.55, No.3, pp.2087-2097.
21.
Jha B.K. and Oni M.O. (2018): Fully developed mixed convection flow in a vertical channel with electrokinetic effects: exact solution.– Multidiscipline Modeling in Materials and Structures, vol.14, No.5, pp.1031-1041.
22.
Jha B.K. and A. Apere C. (2010): Unsteady MHD Couette flows in an annuli: the Riemann-sum approximation approach.– Journal of the Physical Society of Japan, vol.79, No.12, pp.1244-1247.
23.
Oni M.O. and Jha B.K. (2023): Entropy generation analysis of electroosmotic mixed convection flow in vertical microannulus with asymmetric heat fluxes.– Int. Commun. Heat Mass Transf., vol.145, pp.1068-1081.
24.
Oni M.O. and Rilwan U. (2023): Role of suction/injection on electromagnetohydrodynamic natural convection flow in a porous microchannel with electroosmotic effect.– Int. J. of Applied Mechanics and Engineering, vol.28, No.4, pp.94-113.
25.
Oni M.O. and Jha B.K. (2022): Analysis of transient buoyancy/electroosmotic driven flow in a vertical microannulus with velocity-slip and temperature-jump.– Eng. Sci. Technol., pp.84-107,
https://doi.org/10.37256/est.3....
26.
Oni M.O., Rilwan U., Jha B.K. and Jibril H.M. (2023): Analysis of Joule heating and viscous dissipation on electromagnetohydrodynamic flow with electroosmotic effect in a porous microchannel: A heat transfer miniature enhancement.– Heat Transf. (in press), DOI: 10.1002/htj.22974.
27.
Khadrawi A.F. and Al-Nimr M.A. (2007): Unsteady natural convection fluid flow in a vertical microchannel under the effect of the dual-phase-lag heat-conduction model.– International Journal of Thermophysics, vol.28, pp.1387-1400.
28.
Tzou D.Y. (2014): Macro -to Microscale Heat Transfer: The Lagging Behavior.– John Wiley & Sons, DOI:10.1002/9781118818275.
29.
Jha B.K. and Oni M.O. (2018): Transient natural convection flow between vertical concentric cylinders heated/cooled asymmetrically.– Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.232, No.7, pp.926-939.
30.
Mukhopadhyay A., Banerjee S. and Gupta C. (2009): Fully developed hydrodynamic and thermal transport in combined pressure and electrokinetically driven flow in a microchannel with asymmetric boundary conditions.– International Journal of Heat and Mass Transfer, vol.52, No.8, pp.2145-2154.