ORIGINAL PAPER
State Feedback Control of a Car and Beam Prototype
 
More details
Hide details
1
Controle e Processos Industriais, Instituto Federal do Paraná - IFPR, Brazil
 
 
Submission date: 2024-02-12
 
 
Final revision date: 2024-03-19
 
 
Acceptance date: 2024-04-18
 
 
Online publication date: 2024-06-19
 
 
Publication date: 2024-06-27
 
 
Corresponding author
Ricardo Breganon   

Controle e Processos Industriais, Instituto Federal do Paraná - IFPR, Brazil
 
 
International Journal of Applied Mechanics and Engineering 2024;29(2):26-38
 
KEYWORDS
TOPICS
ABSTRACT
The Car and Beam prototype is a teaching piece of equipment, inspired by Ball and Beam systems. It consists of a beam supported in its center by means of a rotating axis installed in two rolling bearings, allowing the beam to rotate through the actuation of a servo motor. A car is coupled to this beam, and its displacement is measured using a linear encoder. This paper focuses on two key aspects: firstly, it offers a mathematical model of the Car and Beam system, and secondly, it outlines the development of a state-feedback tracking controller through pole placement to this system. To validate the modeling and control approach, we present simulation and experimental results using three different reference profiles: step, square wave, and sine wave. Our findings demonstrate the effectiveness of the control strategy in tracking predefined trajectories, both in simulation and with the physical prototype. In conclusion, this study highlights the efficacy of the methodology employed for mathematical modeling and the controller's design in the context of this specific application. The results indicate promising potential for further exploration in this domain.
 
REFERENCES (26)
1.
Garai S. and Balasubramanyam N.H. (2020): Tuning of Ball and Beam system using cascade control.–International Journal of Engineering and Management Research, vol.10, No.4, pp.56-59. doi: https://doi.org/10.31033/ijemr....
 
2.
Ali A.T., Ahmed A.M., Almahdi H.A., Osama A.T. and Naseraldeen A. (2017): Design and implementation of Ball and Beam System using PID controller.– Journal of Electrical and Computer Engineering, vol.1, pp.1-9.
 
3.
Csurcsia P.Z., Bhandari P. and Troyer T.D. (2022): Development of a low-cost PID setup for engineering technology students.– IFAC Paper Online, Science Direct, vol.55-54, pp.213-218.
 
4.
Aviles M., Rodríguez-Reséndiz J., Pérez-Ospina J. and Lara-Mendoza O. (2023): A comprehensive methodology for the development of an open-source experimental platform for control courses.– Technologies, MDPI, vol.11, p.25. Doi: https://doi.org/10.3390/techno....
 
5.
Howimanporn S., Chookaew S. and Silawatchananai C. (2022): Monitoring and controlling of a real-time ball beam fuzzy predicting based on PLC network and information technologies.– Journal of Advances in Information Technology, vol.13, No.1, pp.1-8. Doi: 10.12720/jait.13.1.1-8.
 
6.
Zhang W., Bai L., Zhang S. and Pan J. (2021): Nonlinear Takagi-Sugeno fuzzy observer design for a Ball and Beam system.– IFAC Paper Online, Science Direct, vol.54, No.54, pp.201-205. Doi: 10.1016/j.ifacol.2021.10.034.
 
7.
Zaare S. and Soltanpour M.R. (2020): The position control of the Ball and Beam system using state-disturbance observer-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties.– Mechanical System and Signal Processing, pp.1-23. Doi: https://doi.org/10.1016/j.ymss....
 
8.
Rosa M.R., Romdloy M.Z. and Trilaksono B.R. (2023): The Ball and Beam System: cascaded LQR-FLC design and implementation.– International Journal of Control, Automation, and Systems, vol.21, No.1, pp.201-207, Doi: http://dx.doi.org/10.1007/s125....
 
9.
Yeom K. (2018): Intelligent controller modelling for steerable robotic bar using bio-inspired control synthesis.– Microsystem Technologies, pp.1493-1504, Doi: doi.org/10.1007/s00542-018-4033-9.
 
10.
Niro L., Kaneko E.H., Mollon M.F., Chaves W.S. and Montezuma M.A.F. (2017): Control of a modified Ball and Beam system using tracking system in real time with a DC motor as an actuator.– International Journal of Advanced Engineering Research and Science (IJAERS), vol.4, No.12, pp.99-107, Doi: https://dx.doi.org/10.22161/ij....
 
11.
Yoneyama T. (2022): Engenharia de Controle: Teoria e Prática. 1 ed. São Paulo: Blucher.
 
12.
Breganon R., Alves U.N.L.T., Pivovar L.E., de Almeida J.P.L.S., Ribeiro F.S.F., Barbara G.V. and Mendonça M. (2020): A study on control using state feedback with pole placement in a Furuta pendulum.– Brazilian Journal of Development, vol.6, No.6, pp.36373-36390, doi:10.34117/bjdv6n6-253.
 
13.
Aguiar A. R. and Lordelo A.D.S. (2021): Interval analysis-based design of a robust DC electric motor position controller coupled to an uncertain load (in Portuguese).– Journal of Production and Automation (JPAUT) ISSN 2595-9573, vol.4, No.1, pp.23-37, Retrieved from https://jpaut.com.br/index.php....
 
14.
Guo Y., Yu L. and Xu J. (2019): Robust finite-time trajectory tracking control of wheeled mobile robots with parametric uncertainties and disturbances.– Journal of Systems Science and Complexity, vol.32, pp.1358-1374.
 
15.
Abdulwahhab O.W. (2020): Design of an adaptive state feedback controller for a magnetic levitation systems.– International Journal of Electrical and Computer Engineering, vol.10, pp.4782-4788.
 
16.
Kim E., Fan S., Bose N. and Nguyen H. (2021): Current estimation and path following for an autonomous underwater vehicle (AUV) by using a high-gain observer based on an AUV dynamic model.– International Journal of Control, Automation and Systems, vol.19, pp.478-490.
 
17.
Souza A. and Souza L. (2021): Comparison of the satellite attitude control system design using the H∞ method and H∞/MLI with pole allocation considering the parametric uncertainty.– WSEAS Transactions on Circuits and Systems, vol.20, pp.88-95, Doi:10.37394/23201.2021.20.12.
 
18.
Silva J.M. and Prado M.L.M. (2019): Pole allocation controller applied to an active suspension system (in Portuguese).– In Congresso Brasileiro de Automática-CBA, vol.1, No.1.
 
19.
Bispo V.H.S., Camargo L.C., Yamanaka H.F., Bispo C.A.S., Breganon R. and Alves U.N.L.T. (2022): Control of a propeller-beam system using servo system via pole placement.– Revista Mundi Engenharia, Tecnologia e Gestão, Paranaguá, vol.7, No.7, pp.463-471, doi: 10.21575/25254782rmetg 2022vol7n72354.
 
20.
Shang D., Li X., Yin M. and Li F. (2021): Control method of flexible manipulator servo system based on a combination of RBF neural network and pole placement strategy.– Mathematics, vol.9, No.8, p.896.
 
21.
Zhu X. and Li D. (2021): Robust fault estimation for a 3-DOF helicopter considering actuator saturation.– Mechanical Systems and Signal Processing, vol.155, Article No.107624.
 
22.
Yamanaka H.F., Bispo C.A.S., Camargo L.C., Bispo V.H.S., Alves U.N.L.T. and Breganon R. (2022): Construction and PID control of an experimental Car-Beam platform.– Revista Mundi Engenharia, Tecnologia e Gestão, vol.7, No.7, pp.460-471, dDoi: 10.21575/25254782rmetg2022vol7n72342.
 
23.
Dorf R. C. and Bishop, R. H. (2022): Modern Control Systems.– 13 ed. New Jersey: Pearson.
 
24.
Ogata K. (2010): Modern Control Engineering.– 5 ed. New Jersey: Pearson Hall.
 
25.
D’Azzo J. J. and Houpis C. H. (1988): Linear Control System Analysis and Design: Conventional and Modern.– 3 ed. New York: McGraw-Hill Publishing Company.
 
26.
Nise N. S. (2019): Control Systems Engineering.– 8 ed. California: John Wiley & Sons, Inc.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top