ORIGINAL PAPER
Stress and Displacement Intensity Factors of Cracks in Anisotropic Media
,
 
 
 
More details
Hide details
1
Ishlinsky Institute for Problems in Mechanics, Moscow, Russia; Bauman Moscow State Technical University, Moscow, Russia; Moscow State University of Civil Engineering, Moscow, Russia
 
2
Moscow State University of Civil Engineering, Moscow, Russia
 
 
Online publication date: 2020-08-17
 
 
Publication date: 2020-09-01
 
 
International Journal of Applied Mechanics and Engineering 2020;25(3):212-218
 
KEYWORDS
ABSTRACT
A relation connecting stress intensity factors (SIF) with displacement intensity factors (DIF) at the crack front is derived by solving a pseudodifferential equation connecting stress and displacement discontinuity fields for a plane crack in an elastic anisotropic medium with arbitrary anisotropy. It is found that at a particular point on the crack front, the vector valued SIF is uniquely determined by the corresponding DIF evaluated at the same point.
 
REFERENCES (18)
1.
Zehnder A. (2012): Fracture Mechanics.− Springer.
 
2.
Tada H., Paris P.C. and Irwin G.R. (1985): The stress analysis of cracks handbook.− 2nd Ed. Paris Productions Inc., St. Louis.
 
3.
Kuznetsov S.V. (1996): On the operator of the theory of cracks.− C. R. Acad. Sci. Paris, vol.323, pp.427-432.
 
4.
Goldstein R.V. and Kuznetsov S.V. (1995): Stress intensity factors for half-plane crack in an anisotropic elastic medium.− C. R. Acad. Sci. Paris, vol.320. Ser. IIb, pp.165-170.
 
5.
BrennerA.V. and Shargorodsky E.M. (1997): Boundary value problems for elliptic pseudodifferential operators. − In: Agranovich M.S., Egorov Y.V., Shubin M.A. (eds) Partial Differential Equations IX. Encyclopaedia of Mathematical Sciences, vol.79. Springer, Berlin.
 
6.
Papadopoulos G.A. (1993): Theory of Cracks. − In: Fracture Mechanics. Springer, London.
 
7.
Duduchava R. and Wendland W.L. (1995): The Wiener-Hopf method for systems of pseudodifferential equations with an application to crack problems. − Integral Equations and Operator Theory, vol.23, pp.294-335.
 
8.
Kapanadze D. and Schulze B.W. (2003): Crack Theory and Edge Singularities.− Netherlands: Springer.
 
9.
Buchukuri T., Chkadua O. and Duduchava R. (2004): C rack-type boundary value problems of electro-elasticity. − In: Gohberg I., Wendland W., Ferreira dos Santos A., Speck FO., Teixeira F.S. (eds) Operator Theoretical Methods and Applications to Mathematical Physics. Operator Theory: Advances and Applications, vol.147. Birkhäuser, Basel.
 
10.
Treves F. (1982): Introduction to Pseudodifferential and Fourier Integral Operators. 1. Pseudodifferential Operators. − Plenum Press, N.Y. and London.
 
11.
Shubin M.A. (2001): Pseudodifferential Operators and Spectral Theory. − Berlin: Springer.
 
12.
Duduchava R. (1979): Singular Integral Equations with Fixed Singularities.− Leipzig: Teubner.
 
13.
Kupradze V., Gegelia T., Basheleisvili M. and Burchuladze T. (1979): Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. − Amsterdam: North Holland.
 
14.
Duduchava R., Natroshvili D. and Schargorodsky E. (1989): On the continuity of generalized solutions of boundary value problems of the mathematical theory of cracks. − Bulletin of the Georgian Academy of Sciences, vol.135, pp.497-500.
 
15.
Kuznetsov S.V. (1995): Direct boundary integral equation method in the theory of elasticity. − Quart. Appl. Math., vol.53, pp.1-8.
 
16.
Kuznetsov S.V. (2005): Fundamental and singular solutions of equilibrium equations for media with arbitrary elastic anisotropy.− Quart. Appl. Math., vol.63, pp.455-467.
 
17.
Gurtin M.E. (1972): The Linear Theory of Elasticity. − In: Handbuch der Physik, Bd. VIa/2, Springer, Berlin, 1-295.
 
18.
Kuznetsov S.V. (2005): “Forbidden” planes for Rayleigh waves. − Quart. Appl. Math., vol.60, pp.87-97.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top