ORIGINAL PAPER
Study of magnetic field dependent viscosity on a soret driven ferrothermohaline convection in a rotating porous medium
 
 
More details
Hide details
1
Mahatma Gandhi Government Arts College Mahe - 673311, INDIA
 
 
Online publication date: 2014-03-07
 
 
Publication date: 2014-02-01
 
 
International Journal of Applied Mechanics and Engineering 2014;19(1):61-77
 
KEYWORDS
ABSTRACT
The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the Taylor number tend to stabilize the system. The results are presented numerically and graphically
REFERENCES (40)
1.
Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability. - London: Oxford University Press.
 
2.
Charier-Mojtabi M.C., Elhajjar B. and Mojtabi A. (2007): Analytical and numerical stability analysis of Soret driven convection in a horizontal porous layer. - Phys. of Fluids, vol.19, pp.124104-13.
 
3.
Cowley M.D and Rosensweig R.E. (1967): The interfacial stability of a ferromagnetic fluid. - J. Fluid Mech., vol.30, pp.671-688.
 
4.
Finlayson B.A. (1970): Convective instability of ferromagnetic fluids. - J. Fluid. Mech., vol.40, pp.753-767.
 
5.
Hemalatha R. and Sivapraba N. (2012): Effect of magnetic field dependent viscosity on ferroconvection in a sparsely distributed anisotropic porous medium in the presence of horizontal thermal gradient. - Ind. J. Pure. Appl. Phys., vol.50, pp.907-914.
 
6.
Hemalatha R., Sekar R. and Vaidyanathan G. (2012 ): Effect of dust particles on a Soret- driven ferro thermohaline convection in a rotating medium. - Int. J. of Appl., Mech. and Engng., vol.17, No.2, pp.367-381.
 
7.
Hemalatha R., Sekar R. and Vaidyanathan G. (2011): Effect of rotation on a Soret- driven thermohaline convection in dusty ferrofluids saturating a porous medium. - Int. J. of Appl., Mech. and Engng., vol.16, No.4, pp.1021-1036.
 
8.
Hupper H.E and Turner J.S. (1981): Double diffusive convection. - J. Fluid Mech., vol.106, pp.299-329.
 
9.
Hurle D.T.J. and Jakemann E.J. (1971): Soret-driven thermo solutal convection. - Fluid Mech., vol.47, pp.667-687.
 
10.
Kim M.C. (2011): Linear stability analysis on the onset of Soret driven motion in nanoparticles suspension. - The European Physical Journal, vol.34, pp.27.
 
11.
Kushal S., Paras R. and Kushal S. (2011b): Revolving ferrofluid flow under the influence of magnetic field dependent viscosity and porosity with rotating disk on. - J. Electro Magn. Analysis and Applications (Scientific Research), vol.3(9), pp.378-386.
 
12.
Kushal S., Paras R., Anupam B. and Kushal S. (2010): Effect of magnetic field dependent viscosity on revolving ferrofluid. - J. Magn. Magn. Mater., vol.322, No.21, pp.3476-3480.
 
13.
Kushal S., Paras R., Kushal S. and Anupam B. (2011a): Effect of porosity on revolving ferrofluid with rotating disk - Int. J. Fluids Engng., vol.3, No.3, pp.261-271.
 
14.
Lalas D.P. and Carmi S. (1971): Thermo convective stability of ferrofluids. - Phys Fluids, vol.14, No.2, pp.436-437.
 
15.
Lange A. (2004): Thermomagnetic convection of magnetic fluids in a cylindrical geometry. - Phys. Rev., E.70, pp.046308.
 
16.
Ramanathan and Muchikel N. (2006): Effect of temperature-dependent viscosity on ferroconvection in a porous medium. - Int. J. of Appl. Mech. and Engng., vol.11, No.1, pp.93-104.
 
17.
Rosensweig R.E. (1985): Ferrohydrodynamics. - Cambridge: Cambridge University Press.
 
18.
Schechter R.S and Velarde M. (1974): The component Benard problem - Adv. in Phys., vol.26, pp.265-301.
 
19.
Schwab L., Hilderbrandt U. and Stierstadt K. (1983): Magnetic Benard convection. - J. Magn. Magn. Mater., vol.39, pp.113-114.
 
20.
Sekar R., Vaidyanathan G. and Hemalatha R. (2008): Soret-driven thermohaline convection in dusty ferrofluids saturating a porous medium. - Int. J. of Appl., Mech. and Engng., vol.13, No.4, pp.1003-1018.
 
21.
Sekar R., Vaidyanathan G. and Hemalatha R. (2009): Effect of presence of dust particles on Soret-driven ferrothermohaline convection. - Int. J. of. Appl. Mech. and Engng., vol.14, No.2, pp.509-522.
 
22.
Sekar R., Vaidyanathan G. and Ramanathan A. (1998): Effect of rotation on ferrothermohaline convection saturating a porous medium. - Int. J. Eng. Sci., vol.5, pp.445-452.
 
23.
Sekar R., Vaidyanathan G. and Ramanathan A. (2000): Effect of rotation on ferrothermohaline convection. - J. Magn.
 
24.
Magn. Mater., vol.218, pp.266-272.
 
25.
Sekar R., Vaidyanathan G., Hemalatha R. and Sendhilnathan S. (2006): Effect of sparse distribution pores in a Soret driven ferrothermohaline convection. - J. Magn. Magn. Mater., vol.302, pp.20-28.
 
26.
Sekar R., Vaidyanathan G., Hemalatha R. and Sendhilnathan S. (2007): Effect of Coriolis force on Soret driven thermohaline convective system. - Int. J. Mathematical Sci., vol.6, No.3-4, pp.666-673.
 
27.
Sekar R., Vaidyanathan G. and Ramanathan A. (1993): The ferroconvection in fluids saturating a rotating densely packed porous medium. - Int. J. Eng. Sci., vol.31, No.2, pp.241.
 
28.
Shevtsova M., Melnikov D.E. and Clegros J. (2006): Onset of convection in Soret driven instability. - Phys. Rev., E.73, p.047302.
 
29.
Shliomis M.I. and Souhar M. (2000): Self-oscillatory convection caused by Soret-effect. - Europhys Lett., vol.49, No.1, pp.55.
 
30.
Sunil A. and Sharma R.C. (2005a): Effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid. - App. Math. Comp., vol.163, No.3, pp.1197-1214.
 
31.
Sunil A., Poonam S. and Amit M. (2011): A non linear stability analysis of a rotating double diffusive magnetized ferrofluid. - Appl. Maths. Computation., vol.218, No.6, pp.2785-2799.
 
32.
Sunil D. and Sharma R.C. (2005b): Effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid saturating a porous medium. - Trans. Porous Media, vol.60, No.3, pp.251-274.
 
33.
Turner J.S. (1974): Double diffusive phenomena. - Ann. Rev Fluid Mech., vol.6, pp.37.
 
34.
Vaidyanathan G and Sekar R (2002b): Effect of magnetic field dependent viscosity on ferroconvection in rotating medium. - Ind. J. Pure. Appl. Phys., vol.40, pp.159-165.
 
35.
Vaidyanathan G., Sekar R., Vasanthakumari R. and Ramanathan A. (2002c): Effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium. - J. Magn. Magn. Mater., vol.250, pp.65-76. Vaidyanathan G., Sekar R. and Ramanathan A. (1995): Ferrothermohaline convection in a porous medium. - J. Magn.
 
36.
Magn. Mater., vol.176, pp.321-330.
 
37.
Vaidyanathan G., Sekar R. and Ramanathan A. (1997): Ferrothermohaline convection.- J. Magn. Magn. Mater., vol.176, pp.321-330.
 
38.
Vaidyanathan G., Sekar R., Hemalatha R., Vasanthakumari R. and Sendhilnathan S. (2005): Soret driven ferrothermohaline convection. - J. Magn. Magn. Mater., vol.288.
 
39.
Vaidyanathan G., Ramanathan A. and Maruthamanikandan S. (2002a): Effect of magnetic field dependent viscosity on ferroconvection in sparsely distributed porous medium. - Ind. J. Pure. Appl. Phys., vol.40, pp.166-171.
 
40.
Voelker T. and Odenbach S. (2005): Thermo diffusion in ferrofluids in the presence of a magnetic field. - Phys Fluids., vol.17, pp.037104.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top