ORIGINAL PAPER
Tensile Fault Dislocation in an Irregular-Layered Elastic Half-Space
 
More details
Hide details
1
Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-, 131039, India
 
2
All India Jat Heroes Memorial College, Rohtak-, 124001, India
 
 
Online publication date: 2022-08-29
 
 
Publication date: 2022-09-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(3):171-198
 
KEYWORDS
ABSTRACT
In the present paper, an analytical solution for the static deformation of a two dimensional model consisting of an infinite homogeneous isotropic elastic layer of uniform thickness placed over an irregular isotropic elastic half-space due to movement of a long tensile fault has been obtained. The rectangular shaped irregularity is assumed to be present in the lower half-space and assuming that the fault lies in the elastic layer at a finite depth say ’h’ to the upper surface of the layer. For numerical computation, the expressions of displacements and stresses are calculated by using Sneddon’s method and the effect of source depth and irregularity on the displacements and stresses has been investigated graphically.
REFERENCES (17)
1.
Ben-Menahem A. and Gillon A. (1970): Crustal deformation by earthquakes and explosions.– Bull. Seism. Soc. Am., vol.60, pp.193-215.
 
2.
Bonafede M. and Rivalta E. (1999a): The tensile dislocation problem in a layered elastic medium.− Geophys. J. Int., vol.136, pp.341-356.
 
3.
Bonafede M. and Rivalta E. (1999b): On tensile cracks close to and across the interface between two welded elastic half-spaces.– Geophys. J. Int., vol.138, pp.410-434.
 
4.
Singh S.J. and Garg N.R. (1986): On the representation of two-dimensional seismic sources.– Acta. Geophys. Pol., vol.34, pp.1-12.
 
5.
Singh S.J., Punia M. and Kumari G. (1997): Deformation of a layered half-space due to a very long dip-slip fault.– Proc. Indian Natl. Sci. Acad., vol.63a, pp.225-240.
 
6.
Singh S.J. and Singh M. (2004): Deformation of a layered half-space due to a very long tensile fault.– Proc. Indian Acad. Sci. (Earth Planet. Sci.), vol.113, pp.235-246.
 
7.
Kumar A., Singh S.J. and Singh J. (2005): Deformation of two welded half-spaces due to a long inclined tensile fault. – J. Earth Syst. Sci., vol.114, pp.97-103.
 
8.
Bala N. and Rani S. (2009): Static deformation due to a long buried dip-slip fault in an isotropic half-space welded with an orthotropic half-space.– Sadhana Indian Academy of Sciences, vol.34, pp.887-902.
 
9.
Malik M., Singh M. and Singh J. (2012): Static deformation due to long tensile fault embedded in an isotropic half-space in welded contact with an orthotropic half-space.– Inter. J. Sci. Res. Pub., vol.2, pp.1-12.
 
10.
Malik M., Minakshi, Sahrawat R.K. and Singh M. (2014): Static deformation of two half-spaces in smooth contact due to a vertical tensile fault of finite width.– Inter. J. Comp., vol.4, pp.440-450.
 
11.
Ray A. and Singh A.K. (2020): Love-type waves in couple-stress stratum imperfectly bonded to an irregular viscous substrate.– Acta Mech., vol.231, pp.101-123.
 
12.
Selim M.M. (2020): Propagation of torsional surface waves in heterogeneous half-space with irregular free surface.– American Scientific Publishers, vol.9, pp.128-131.
 
13.
Madan D.K, Kumar R. and Sikka J.S. (2014): Love wave propagation in an irregular fluid saturated porous anisotropic layer with rigid boundaries.– Journal of Applied Science and Research, vol.10, No.4, pp.281-287.
 
14.
Madan D.K. and Gaba A. (2016): 2-Dimensional deformation of an irregular orthotropic elastic medium.– Journal of Mathematics (IOSR-JM), vol.12, pp.101-113.
 
15.
Savita, SahrawatR.K. and Malik M. (2021a): Stresses in a monoclinic elastic layer lying over an irregular isotropic elastic half-space.– Advances and Applications in Mathematical Sciences, vol.21, pp. 21-39.
 
16.
Savita, Sahrawat R.K and Malik M. (2021b): Stresses in a monoclinic elastic plate placed upon an irregular monoclinic elastic half-space.– Indian Journal of Science and Technology, vol.14, pp.55-70.
 
17.
Sokolnikoff I.S. (1956): Mathematical Theory of Elasticity.– McGraw-Hill, New York.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top