ORIGINAL PAPER
The Characteristics of Selected Triaxiality Measures of the Stresses for a C(T) Specimen Dominated by the Plane Strain State
 
 
 
More details
Hide details
1
Kielce University and Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Manufacturing Engineering and Metrology, Al. 1000-lecia PP 7, 25-314, Kielce, Poland
 
 
Online publication date: 2020-03-12
 
 
Publication date: 2020-03-01
 
 
International Journal of Applied Mechanics and Engineering 2020;25(1):52-74
 
KEYWORDS
ABSTRACT
The paper presents a comprehensive analysis of the stress field and selected triaxiality parameters near the crack tip for C(T) specimen dominated by the plane strain state using the finite element method. It includes some theoretical information about elastic-plastic fracture mechanics, the basics of the FEM modeling and presentation of the numerical results. The FEM analysis includes calculations with large strain assumptions. The influence of the external load and crack length is discussed. Additional elements of the paper are a qualitative assessment of the size of plastic zones and the crack tip opening displacement.
 
REFERENCES (36)
1.
ASTM (2005): ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness. – American Society for Testing and Materials.
 
2.
ASTM (2011): ASTM E1921-11 Standard test method for determining of reference temperature T0 for ferritic steels in the transition range. – American Society for Testing and Materials.
 
3.
BS 5762. Methods for crack opening displacement (COD) testing. – London: British Standards Institute; 1979.
 
4.
BS 7448: Part 1. Fracture mechanics toughness tests: Part 1 – Method for determining of K Ic, critical CTOD and critical J values of metallic materials. – London: British Standards Institute; 1991.
 
5.
PN-87/H-4335, Metals – Test method for measurement of the fracture toughness for plane strain conditions.
 
6.
Kornev V.M. and Demeshkin A.G. (2018): Quasi-brittle fracture of compact specimens with sharp notches and U-shaped cuts.– Journal of Applied Mechanics and Technical Physics, vol.59, No.1, pp.120-131, DOI 10.1134/S0021894418010157.
 
7.
Kayamori Y. and Kawabata T. (2017): Evaluation of rotational deformation in compact specimens for CTOD fracture toughness testing. – DOI 10.1016/j.prostr.2017.07.135.
 
8.
Doddamani S. and Kaleemulla M. (2017): Fracture toughness investigations of Al6061-graphite particulate composite using compact specimens.– FratturaedIntegritàStrutturale, vol.11, No.41, pp.484-490, DOI 10.3221/IGF-ESIS.41.60.
 
9.
Horstman R.T., Lieb K.C., Power B., Landes J.D., et al (1979): Evaluation of the J Integral for the Compact Specimen. – Journal of Testing and Evaluation, vol.7, No.5, DOI 10.1520/JTE10222J.
 
10.
Shivakumar N. and Newman J.C. (1992): Verification of effective thicknesses for side-grooved compact specimens.– Engineering Fracture Mechanics, vol.43, No.2, DOI 10.1016/0013-7944(92)90125-X, Source NTRS,.
 
11.
HuJ.M., Cheng J., Albrecht P. and Joyce J. (1989): Ductile Crack Extension in Compact Specimens at Limit Load.– DOI 10.1016/B978-0-08-034341-9.50047-4, In book: Proceedings of The 7th International Conference On Fracture (ICF7).
 
12.
Zhu X.-K. and Joyce J.A. (2012): Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. – Engineering Fracture Mechanics, vol.85, pp.1–46, doi:10.1016/j.engfracmech.2012.02.001.
 
13.
O’Dowd N.P. and Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of Fields. – J. Mech. Phys. Solids, vol.39, No.8, pp.989-1015.
 
14.
O’Dowd N.P. and Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture Applications. – J. Mech. Phys. Solids, vol.40, No.5, pp.939-963.
 
15.
Yang S., Chao Y.J. and Sutton M.A. (1993): Higher order asymptotic crack tip fields in a power-law hardening material. – Engineering Fracture Mechanics, vol.19, No.1, pp.1-20.
 
16.
Hutchinson J.W. (1968): Singular behaviour at the end of a tensile crack in a hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.13-31.
 
17.
Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near a crack tip in a power-law hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.1-12.
 
18.
Neimitz A., Graba M. and Gałkiewicz J. (2007): An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. – Engineering Fracture Mechanics, vol.74, pp.1308-1322.
 
19.
Ritchie R.O., Knott J.F. and Rice J.R. (1973): On the relationship between critical tensile stress and fracture toughness in mild steel. – Journal of the Mechanics and Physics of Solids, vol.21, pp.395-410.
 
20.
Graba M. (2018): Characterization of the stress fields near crack tip for compact specimen for elastic-plastic materials in plane strain state domination. – Book of abstracts of 41st Solid Mechanics Conference – SOLMECH 2018, paper number P262, pp.524-525.
 
21.
Graba M. (2019): Characterization of the stress fields near crack tip for C(T) specimen for elastic-plastic materials for plane strain. – International Journal of Applied Mechanics and Engineering, vol.24, No.3, pp.549-576.
 
22.
Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for single edge notch plate in tension. – Archives of Civil and Mechanical Engineering, vol.11, No.2, pp.301-319.
 
23.
Graba M. (2012): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. – J. Theor. Appl. Mech., vol.50, No.1, pp.23-46.
 
24.
Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. – Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.269-290.
 
25.
Graba M. (2012): Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition. – Archives of Civil and Mechanical Engineering, Published by Elsevier, vol.12, No.1, pp.29-40.
 
26.
Graba M. (2017): A numerical analysis of selected elastic-plastic fracture parameters for DEN(T) plates under plane strain conditions. – International Journal of Applied Mechanics and Engineering, vol.22, No.1, pp.49-80, DOI: https://doi.org/10.1515/ijame-....
 
27.
Bai Y., Teng X. and Wierzbicki T. (2009): On the application of stress triaxiality formula for plane strain fracture testing. – J. Eng. Mater. Technol., vol.131, No.2, 021002, DOI: 10.1115/1.3078390.
 
28.
McClintock F.A.(1968): A criterion of ductile fracture by the growth of holes. – ASME J. Appl. Mech., vol.35, pp.363-371.
 
29.
Rice J.R. and Tracey D.M. (1969): On the ductile enlargement of voids intriaxial stress fields. – J. Mech. Phys. Solids, vol.17, pp.201-217.
 
30.
Bai Y. and Wierzbicki T. (2008): A new model plasticity and fracturewith pressure and Lode dependence. – Int. J. Plast., vol.24, pp.1071-1096.
 
31.
Neimitz A., Galkiewicz J. and Dzioba I.R. (2018): Calibration of constitutive equations under conditions of large strains and stress triaxiality. – Archives of Civil and Mechanical Engineering, vol.18, No.4, pp.1123-1135, DOI: 10.1016/j.acme.2018.02.013.
 
32.
Bao Y. and Wierzbicki T. (2004): On fracture locus in the equivalent strain and stress triaxiality space.– International Journal of Mechanical Science, vol.46, pp.81-98.
 
33.
Bai Y. and Wierzbicki T. (2010): Application of extended Mohr–Coulomb criterion to ductile fracture.– International Journal of Fracture, vol.161, pp.1-20.
 
34.
Kumar V., German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. – Electric Power Research Institute, Inc. Palo Alto, CA, EPRI Report NP-1931.
 
35.
Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension. – Journal of Theoretical and Applied Mechanics, vol.51, No.2, pp.349-362.
 
36.
Graba M. (2017): Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain. – Bulletin of the Polish Academy of Sciences-Technical Sciences, vol.65, No.4, pp.523-532.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top