ORIGINAL PAPER
The Dynamics of a Parametrically Driven Damped Pendulum
A. Das 1
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Jadavpur University Kolkata-700032, INDIA
 
2
Department of Physics and Meteorology Indian Institute of Technology Kharagpur-721302, INDIA
 
 
Online publication date: 2015-05-23
 
 
Publication date: 2015-05-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(2):257-266
 
KEYWORDS
ABSTRACT
Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors with inversion symmetry in the phase plane.
REFERENCES (14)
1.
Arscott F.M. (1964): Periodic Differential Equations. - Pergamon.
 
2.
Baker G.L. and Gollub J.P. (1990): Chaotic Dynamics: an Introduction. - Cambridge University Press.
 
3.
Bartuccelli M.V., Gentile G. and Georgiou K.V. (2001): On the dynamics of a vertically driven damped planar pendulum. - Proc. R. Soc. Lond A, vol.457, pp.3007-3022.
 
4.
Bender C.M. and Orszag S.A. (1978): Advanced Mathematical Methods for Scientists and Engineers. - McGrew Hill.
 
5.
Faraday M. (1831): On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. - Trans. R. Soc. Lond. A, vol.121, pp.299-340.
 
6.
Jing Z. Jing and Yang J. (2006): Complex dynamics in pendulum equation with parametric and external excitations I. - Int. J. Bifurcation and Chaos, vol.16, No.10, pp.2887-2902.
 
7.
Jordan D.W. and Smith P. (1977): Nonlinear Ordinary Differential Equations. - Oxford: Clarendon Press.
 
8.
Kumar K. (1996): Linear theory of faraday instability in viscous liquids. - Proc. R. Soc. A, vol.452, pp.1113-1126.
 
9.
Landau L.D. and Lifschitz E.M. (1976): Mechanics, 3rd edn.. - Oxford: Pergamon.
 
10.
Leven R.W., Pompe B., Wilke C., and Koch B.P. (1985): Experiments on periodic and chaotic motions of a parametrically forced pendulum. - Physica D, vol.16, pp.371-384.
 
11.
McLaughlin J. (1981): Period-doubling bifurcations and chaotic motions for a parametrically forced pendulum. - Journal of Statistical Physics, vol.24, pp.375-388.
 
12.
Starrett J. and Tagg R. (1995): Control of a chaotic parametrically driven pendulum. - Phys. Rev. Lett., vol.74, No.11, pp.1974-1977.
 
13.
Van de Water W., Hoppenbrouwers M., and Christiansen F. (1991): Unstable periodic orbits in the parametrically excited pendulum. - Phys. Rev. A, vol. 44, No.10, pp.6388-6398.
 
14.
Wolf A., Swift J.B., Swinney H.L. and Vastano J.A. (1985): Determining Lyapunov exponents from a time series. - Physica D, vol.16, No.3, pp.285-317.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top