ORIGINAL PAPER
The Effect of Multigrid Parameters in a 3D Heat Diffusion Equation
 
More details
Hide details
1
State University of Ponta Grossa, Department of Mathematics and Statistics Ponta Grossa – PR, Brazil
 
2
State University of Central West, Department of Mathematics Irati – PR, Brazil
 
3
Federal University of Paraná Graduate Program in Numerical Methods in Engineering , Curitiba – PR, Brazil
 
4
Federal University of Paraná, Department of Mechanical Engineering , Curitiba – PR, Brazil
 
 
Online publication date: 2018-03-14
 
 
Publication date: 2018-02-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(1):213-221
 
KEYWORDS
ABSTRACT
The aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.
REFERENCES (22)
1.
Briggs W.L., Henson V.E. and McCormick S.F. (2000): A Multigrid Tutorial. second ed. - Philadelphia: SIAM.
 
2.
Thekale A., Gradl T., Klamroth K. and Rüde U. (2010): Optimizing the number of multigrid cycles in the full multigrid algorithm. - Numer. Linear Algebra Appl., No.17, pp.199-210.
 
3.
Brandt A. (1977): Multi-level adaptive solutions to boundary-value problems. - Math. Comput. No.31, pp.333-390.
 
4.
Trottenberg U., Oosterlee C. and Schüller A. (2001): Multigrid. - San Diego: Academic Press.
 
5.
Mohamed S.A. (2008): Optimally efficient multigrid algorithm for incompressible Euler equations. - Int. J. Numer. Methods Heat Fluid Flow, No.18, pp.783-804.
 
6.
Ferziger J.H. and Peric M. (2002). Computational Methods for Fluid Dynamics. - 3 ed. - Berlin: Springer.
 
7.
Pinto A.M., Santiago C.D. and Marchi C.H. (2005): Effect of Parameters of a Multigrid Method on CPU Time for One-dimensional Problems. - Proceedings of COBEM.
 
8.
Rabi J.A. and De Lemos M.J.S. (2001): Optimization of convergence acceleration in multigrid numerical solutions of conductive-convective problems. - Appl. Math. Comput. No.124, pp.215-226.
 
9.
Santiago C.D. and Marchi C.H. (2007): Optimum Parameters of a Geometric Multigrid for a Two-Dimensional Problem of Two-Equations. - Proceedings of COBEM.
 
10.
Oliveira F., Pinto M.A.V., Marchi C.H. and Araki L.K. (2012): Optimized Partial Semicoarsening Multigrid Algorithm, for Heat Diffusion Problems and Anistropic Grids. - Appl. Math. Modell. No.36, pp.4665-4676.
 
11.
Suero R., Pinto M.A.V., Marchi C.H., Araki L.K. and Alves A.C. (2012): Analysis of the algebraic Multigrid parameters for two-dimensional steady-state diffusion equations. - Appl. Math. Modell., No.36, pp.2996-3006.
 
12.
Roache P.J. (1998): Fundamentals of Computational Fluid Dynamics. - Albuquerque, USA: Hermosa Publishers.
 
13.
Larsson J., Lien F.S. and Yee E. (2005): Conditional Semicoarsening Multigrid Algorithm for the Poisson Equation on Anisotropic Grids. - J. Comput. Phys. No.208, pp.368-383.
 
14.
Golub G. H. and Ortega J.M. (1992): Scientific Computing and Differential Equations: an Introduction to Numerical Methods. - Academic Press, Inc..
 
15.
Incropera F.P., DeWitt D.P., Bergman T.L. and Lavine A.S. (2007): Fundamentals of Heat and Mass Transfer. - Sixth ed. - John Wiley & Sons.
 
16.
Tannehill J.C., Anderson D.A. and Pletcher R.H. (1997): Computational Fluid Mechanics and Heat Transfer. - Second ed. - Washington: Taylor & Francis.
 
17.
Wesseling P.(1992): An Introduction to Multigrid Methods. - Philadelphia: John Wiley & Sons.
 
18.
Hirsch C. (1988): Numerical Computational of Internal and External Flows. Vol. 1. - Chichester: John Wiley & Sons.
 
19.
Parter S.V. (1988): Estimates for Multigrid Methods Based on Red-Black Gauss-Seidel Smooth. - Numer. Math., No.52, pp.701-723.
 
20.
J. Zhang (1996): Multigrid Acceleration Techniques and Applications to the Numerical Solution of Partial Differential Equations. - Dissertation. Chongqing Univesity. China.
 
21.
Gaspar F.J., Gracia J.L., Lisbona F.J. and Rodrigo C. (2009): On geometric Multigrid methods for triangular grids three-coarsening strategy. - Appl. Numer. Math. No.59, pp.1693-1708.
 
22.
Winfried A. and Christoph F. (2004): Iterative Solution of Large Linear Systems Arising in the 3-Dimensional Modelling of an Electric Field in Human Thigh. - Technical Report. ANUM Preprint No. 12/04.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top