ORIGINAL PAPER
The Effect of Thermal Modulation on Double Diffusive Convection in the Presence of Applied Magnetic Field and Internal Heat Source
,
 
,
 
 
 
 
More details
Hide details
1
Department of Sciences & Humanities, Division of Mathematics, Vignan’s Foundation for Science, Technology & Research, Guntur-, 522213, Andhra Pradesh, India
 
2
Department of Mathematics, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana-500075, India
 
 
Online publication date: 2021-01-29
 
 
Publication date: 2021-03-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(1):135-155
 
KEYWORDS
ABSTRACT
The investigation of thermal modulation on double-diffusive stationary convection in the presence of an applied magnetic field and internal heating is carried out. A weakly nonlinear stability analysis has been performed using the finite-amplitude Ginzburg-Landau model. This finite amplitude of convection is obtained at the third order of the system. The study considers three different forms of temperature modulations. OPM-out of phase modulation, LBMO-lower boundary modulation, IPM-in phase modulation. The finite-amplitude is a function of amplitude δT, frequency ω and the phase difference θ. The effects of δT and ω on heat/mass transports have been analyzed and depicted graphically. The study shows that heat/mass transports can be controlled effectively by thermal modulation. Further, it is found that the internal Rayleigh number Ri enhances heat transfer and reduces the mass transfer in the system.
 
REFERENCES (65)
1.
Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability.– Oxford University Press, London, UK.
 
2.
Huppert H.E. and Sparks R.S.J. (1984): Double-diffusive convection due to crystallization in magmas.– Annual Review of Earth and Planetary Sciences, vol.12, pp.11-37.
 
3.
Rudraiah N and Shivakumara I.S. (1984): Double-diffusive convection with an imposed magnetic field.– Int. J of Heat and Mass Transfer, vol.27, No.10, pp.1825-1836.
 
4.
Hill A. (2005): Double-diffusive convection in a porous medium with a concentration based internal heat source.– Proc. R. Soc. A vol.461, pp.561-574.
 
5.
Zhao M., Zhang Q. and Wang S. (2014): Linear and nonlinear stability analysis of double diffusive convection in a maxwell fluid saturated porous layer with internal heat source.– Journal of Applied Mathematics, Article ID 489279, pp.01-12.
 
6.
Baines P. G. and Gill A. E. (1969): On thermohaline convection with linear gradients.– J. Fluid Mech. vol.37, pp.289-306.
 
7.
Huppert H. E. and Turner, J.S. (1981): Double diffusive convection.– J. Fluid Mech., vol.106, pp.299-329.
 
8.
Rudraiah N. (1986): Double-diffusive magnetoconvection.– J. Phys., vol.27, pp.233-266.
 
9.
Venezian G.(1969): Effect of modulation on the onset of thermal convection.– J. of Fluid Mech., vol.35, pp.243-254.
 
10.
Poulikakos D. (1986): Double diffusive convection in a horizontally sparsely packed porous layer.– Int. Commun. Heat Mass Transf., vol.13, pp.587-598.
 
11.
Wang S. and Tan W. (2008): Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below.– Phys. Lett. A., vol.372, pp.3046-3050.
 
12.
Kumar A. and Bhadauria B.S. (2011): Double diffusive convection in a porous layer saturated with viscoelastic fluid using a thermal non-equilibrium model.– Phys. Fluids, vol.23, p.054101.
 
13.
Kumar A. and Bhadauria B.S. (2011): Nonlinear two dimensional double diffusive convection in a rotating porous layer saturated by a viscoelastic fluid.– Transp. Porous Media., vol.87, pp.229-250.
 
14.
Malashetty M. S., W. Tan and Swamy M. (2009): The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer.– Phys. Fluids, vol.21, pp.084101.
 
15.
Kuznetsov A.V.and Nield D.A. (2010): The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium.– Transport in Porous Media, vol.85, pp.941-951.
 
16.
Manjula S.H. and Kiran P.(2019): Throughflow and gravity modulation effects on double diffusive oscillatory convection in a viscoelastic fluid saturated porous medium.– Adv. Sci. Eng. Med., vol.12, No.3, pp.01-10. doi:10.1166/asem.2020.2565.
 
17.
Bhadauria B.S. (2007): Double diffusive convection in a porous medium with modulated temperature on the boundaries.– Transport in Porous Media, vol.70, pp.191-211.
 
18.
Bhadauria B.S. and Kiran P. (2014): Weak nonlinear double diffusive magneto-convection in a Newtonian liquid under temperature modulation.– Int. J. Eng. Math., Article ID 296216, pp.01-14.
 
19.
Bhadauria B.S. and Kiran P. (2014): Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries.– Int. Communi in Heat and Mass Transf., vol.58, pp.166-175.
 
20.
Kiran P. (2016): Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium.– Ain Shams Engineering J., vol.7, No.1, pp.453-462.
 
21.
Narayana M., Sibanda P., Motsa S. and Narayana P.A.L. (2012): Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium.– Heat Mass Transfer, vol.48, pp.863-874.
 
22.
Narayana M., Gaikwad S., Sibanda P. and Malge. R. (2013): Double diffusive magneto-convection in viscoelastic fluids.– Int. J. of Heat and Mass Transfer, vol.67, pp.194-201.
 
23.
Bhadauria B.S. and Kiran P. (2014): Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter.– Int. J Heat Mass Transf., vol.84, pp.610-624.
 
24.
Bhadauria B.S. and Kiran P. (2014): Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation.– Int. J. Non-linear Mech., vol.65, pp.133-140.
 
25.
Bhadauria B.S. and Kiran P. (2014): Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation.– Int. J. Heat Mass Transf., vol.77, pp.843-851.
 
26.
Kiran P., Manjula SH. and Narasimhulu Y. (2018): Weakly nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium with throughflow and temperature modulation.– Int. J. of Applied Mechanics and Eng., vol.23, No.3, pp.01-28.
 
27.
Manjula S.H. and Kiran P. and Bhadauria B.S.(2020): Throughflow and G-jitter effects on oscillatory convection in a rotating porous medium.– Adv. Sci. Eng. Med., vol.12, pp.01-10.
 
28.
Bhadauria B.S., Hashim I. and Siddheshwar PG. (2013): Study of heat transport in a porous medium under G-jitter and internal heating effects.– Transport in Porous Media, vol.96, pp.21-37.
 
29.
Bhadauria B.S., Hashim I. and Siddheshwar P.G. (2013): Effects of time-periodic thermal boundary conditions and internal heating on heat transport in a porous medium.– Transport in Porous Media, vol.97, pp.185-200.
 
30.
Bhadauria B.S, Kiran P. and Belhaq M. (2014): Nonlinear thermal convection in a layer of nanofluid under g-jitter and internal heating effects.– MATEC Web of Conferences, vol.16, Article Number 0900309003, p.7.
 
31.
Bhadauria, B.S, Kiran., P. (2014): Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source.– Ain Shams Eng J., vol.5, No.4, pp.1287-1297.
 
32.
Kiran P., Bhadauria B.S. and Kumar V.(2016): Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation.– J. of Nanofluids, vol.5, No.3, pp.328-339.
 
33.
Kiran P. and Narasimhulu Y. (2018): Internal heating and thermal modulation effects on chaotic convection in a porous medium.– J. of Nanofluids, vol.7, No.3, pp.544-555.
 
34.
Altawallbeh AA., Hashim I. and Bhadauria BS. (2019): Magneto-double diffusive convection in a viscoelastic fluid saturated porous layer with internal heat source.– AIP Conference Proceedings, vol.2116, No.1, Article number 030015.
 
35.
Srivastava A. and Singh A. K. (2018): Linear and weak nonlinear double diffusive convection in a viscoelastic fluid saturated anisotropic porous medium with internal heat source.– J. of Applied Fluid Mechanics, vol.11, No.1, pp.65-77.
 
36.
Bhadauria B.S. and Kiran P. (2014): Weakly nonlinear double diffusive convection in a temperature dependent viscosity fluid saturated porous medium under temperature modulation.– Int. J. Eng Trends and Tech, pp.146-153.
 
37.
Bhadauria B.S. and Kiran P. (2015): Weak nonlinear double diffusive magneto convection in a newtonian liquid under gravity modulation.– J. of Applied Fluid Mechanics, vol.8, No.4, pp.735-746.
 
38.
Srivastava A., Bhadauria B.S. and Hashim I. (2014): Effect of internal heating on double diffusive convection in a couple stress fluid saturated anisotropic porous medium.– Advances in Materials Science &Appl., vol.3, pp.24-45.
 
39.
Kiran P. (2020): Concentration modulation effect on weakly nonlinear thermal instability in a rotating porous medium.– J. of Applied Fluid Mechanics, vol.13, No.5, pp.01-13.
 
40.
Kiran P. and Manjula S.H.(2019): Weakly nonlinear mass transfer in an internally soluted and modulated porous layer.– Adv. Sci. Eng. Med., vol.12, No.3, pp.1-10, doi:10.1166/asem.2020.2566.
 
41.
Malkus W.V.R. and Veronis G. (1958): Finite amplitude cellular convection.– J. of Fluid Mech., vol.4, pp.225-260.
 
42.
Keshri Om.P., Gupta V.K. and Kumar A. (2018): Study of weakly nonlinear mass transport in Newtonian fluid with applied magnetic field under concentration/gravity modulation.– Nonlinear Engineering. 2018, pp.2-10, https://doi.org/10.1515/nleng-....
 
43.
Manjula S.H., Kiran P., Reddy R. and Bhadauria B.S. (2020): The complex Ginzburg Landau model for an oscillatory convection in a rotating fluid layer.– Int. J. of Applied Math. and Mech., vol.25, pp.75-92.
 
44.
Kiran P., Bhadauria B.S. and Roslon R. (2020): The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium.– J. of Nanofluid, vol.8, pp.01-11.
 
45.
Kiran P. and Bhadauria B.S (2015): Chaotic convection in a porous medium under temperature modulation.– Transport in Porous Media, vol.107, pp.745-763.
 
46.
Bhadauria B.S nad Kiran. P. (2013): Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation.– Transport in Porous Media.vol.100, pp.279-295.
 
47.
Kiran P and Bhadauria B.S (2015): Nonlinear throughout effects on thermally modulated porous medium.– Ain Shams Eng J., vol.7, No.1, pp.473-482.
 
48.
Manjula S.H., Kiran P. and Narasimhulu Y. (2018): Heat transport in a porous medium saturated with variable viscosity under the effects of thermal modulation and internal heating.– Int. J. of Emerging Tech. and Innovative Res., vol.5, pp.59-75.
 
49.
Bhadauria B.S. and Kiran P. (2014): Weak nonlinear double-diffusive magneto-convection in a newtonian liquid under temperature modulation.– Int. J. of Engg Mathematics, Article ID 296216, pp.01-14.
 
50.
Kiran P. and Bhadauria B.S. and Narasimhulu Y. (2016): Nonlinear throughflow effects on thermally modulated rotating porous medium.– J. of Applied Nonlinear Dynamics, vol.6, pp.27-44.
 
51.
Kiran P. and Bhadauria B.S (2016): Throughflow and rotational effects on oscillatory convection with modulation.– Nonlinear Studies, vol.23, No.3, pp.439-455.
 
52.
Kiran P. and Bhadauria B.S. and Narasimhulu Y. (2018): Oscillatory magneto-convection under magnetic field modulation.– Alexandria Engg J., vol.57, pp.445-453.
 
53.
Kiran P. and Bhadauria B.S. (2016): Weakly nonlinear oscillatory convection in a rotating fluid layer under temperature modulation.– J. of Heat Transf., vol.138, No.5, p.10.
 
54.
Kiran P. and Narasimhulu Y. (2018): Weak nonlinear thermal instability in a Dielectric fluid layer under temperature modulation.– Int. J. of Advanced Research Trends in Eng and Tech., vol.5, pp.470-476.
 
55.
Manjula S.H. and Kiran P. (2020): Throughflow and gravity modulation effects on double diffusive oscillatory convection in a viscoelastic fluid saturated porous medium.– Adv. Sci. Eng. Med., vol.12, pp.612-621.
 
56.
Manjula S.H., Kiran P. and Bhadauria B.S. (2020): Throughflow and g-jitter effects on oscillatory convection in a rotating porous medium.– Adv. Sci. Eng. Med., vol.12, pp.781-791.
 
57.
Kiran P., Manjula S.H. and Roslan R. (2019): The effect of gravity modulation on double diffusive convection in the presence of applied magnetic field and internal heat source.– Adv. Sci. Eng. Med., vol.12, pp.792-805.
 
58.
Kiran P., Manjula S.H., Narasimlu G. and Roslan R. (2019): The effect of modulation on heat transport by a weakly nonlinear thermal instability in the presence of applied magnetic field and internal heating.– Int J of Applied Mathematics and Mechanics., vol.25, No.4, pp.96-115.
 
59.
Manjula S.H., Kiran P. and Narayanamoorthy S. (2020): The effect of gravity driven thermal instability in the presence of applied magnetic field and internal heating.– AIP Conference Proceedings, vol.2261, pp.030042.
 
60.
Kiran P., Manjula S.H., Suresh P. and Raj Reddy P. (2020): The time periodic solutal effect on oscillatory convection in an electrically conducting fluid layer.– AIP Conference Proceedings, vol.2261, pp.030004.
 
61.
Kiran P. (2016): Nonlinear throughflow and internal heating effects on vibrating porous medium.– Alexandria Eng. J., vol.55, No.2, pp.757-767.
 
62.
Kiran P. (2015): Throughow and g-jitter effects on binary fluid saturated porous medium.– Applied Math and Mech., vol.36, No.10, pp.1285-1304.
 
63.
Kiran. P. (2015): Nonlinear thermal convection in a viscoelactic nanofluid saturated porous medium under gravity modulation.– Ain Shams Eng J., vol.7, pp.639-651.
 
64.
Kiran P. and Narasimhulu Y. (2017): Weakly nonlinear oscillatory convection in an electrically conduction fluid layer under gravity modulation.– Int J Appl. Comput. Math., vol.3, No.3, pp.1969-1983.
 
65.
Bhadauria B.S., Singh M.K., Singh A., Singh B.K. and Kiran P. (2016): Stability analysis and internal heating effect on oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation.– Int. J of Applied Mechanics and Engg., vol.21, No.4, pp.785-803.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top