ORIGINAL PAPER
The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution
 
 
More details
Hide details
1
Department of Mathematics, Ohio University Athens, OH 45701, USA
 
 
Online publication date: 2013-04-19
 
 
Publication date: 2013-03-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(1):249-257
 
KEYWORDS
ABSTRACT
We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem
REFERENCES (23)
1.
Alimov M.M. (2011): Construction of exact solutions to the Muskat problem.- Lobachevskii. J. Math, vol.32, pp.404-413.
 
2.
Crowdy D.G. (2002): On a class of geometry-driven free boundary problems.- SIAM J. Appl Math, vol.62, pp.945-964.
 
3.
Crowdy D.G. (2006): Exact solutions to the unsteady two-phase Hele-Shaw problem.- Quart J. Mech. Appl. Math, vol.59, pp.475-485.
 
4.
Cummings L.J., Howison S.D. and King J.R. (1999): Two-dimensional Stokes and Hele-Shaw flows with free surface.- Euro. J. Appl Math., vol.10, pp.635-680.
 
5.
Currie I.G. (1974): Fundamental mechanics of fluids.- USA: McGraw-Hill Book Company.
 
6.
David P.J. (1974): The Schwarz Function and its Application.- The Mathematical Association of America p.228.
 
7.
Galin L.A. (1945): Unsteady filtration with a free surface.- Dokl. Akad. S.S.S.R, vol.47, pp.246-249.
 
8.
Gustafsson B. and Vasil’ev A. (2006): Conformal and potential analysis in Hele-Shaw cells.- Basel, Switzerland: Part of Springer Science and Business Media.
 
9.
Howison S.D. (1992): Complex variable methods in Hele-Shaw moving boundary problems.- Euro. J. Appl. Math, vol.3, pp.209-224.
 
10.
Howison S. D. (2000): A note on the two-phase Hele-Shaw problem.- J. Fluid Mech vol.409, pp.243-249.
 
11.
Kang H. and Crowdy D. (2001): Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell. - J. Nonlinear Sci, vol.11, pp.279-304.
 
12.
Lacey A.A. (1982): Moving boundary problems in the flow of liquid though porous media.- J. Austra. Math. Soc. (series B), vol.24, pp.171-193.
 
13.
Lundberg E. (2011): Problems in classical potential theory with applications to mathematical physics.- (Doctoral dissertation), Retrieved from Barnes and Nobel, ISBN-13: 9781249069386.
 
14.
McDonald N.R. (2011): Generalized Hele-Shaw flow: A Schwarz function approach.- Euro. J. Appl. Math, vol.22, pp.517-532.
 
15.
Oust B. (2009): Laplace growth patterns: A study of boundary evolution using iterated conformal maps and Loewner evolution.- Unpublished master’s thesis: University of Oslo, Norway.
 
16.
Polubarinova-Kochina P.Ya (1945): On the motion of an oil contour. - Dokl. Akad. S.S.S.R, vol.47, pp.254-257.
 
17.
Richardson S. (1972): Hele-Shaw flows with a free boundary by the injection of fluid into a narrow channel. - J. Fluid Mech, vol.56, pp.609-618.
 
18.
Richardson S. (1981): Some Hele-Shaw flows with time-dependent free boundaries.- J. Fluid Mech, vol.102, pp.263-278.
 
19.
Richardson S. (1992): Hele-Shaw flows with time-dependent free boundaries involving injuction through slits.- Studies in Applied Mathematics, vol.87, pp.175-194.
 
20.
Safman P.G. and Taylor G.I. (1958): The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid.- Proc. R. Soc. London, vol.245, pp.312-329.
 
21.
Savina T. and Nepomnyashchy A. (2011): Dynamical mother body in a Hele-Shaw problem.- Physica D, vol.240, pp.1156-1163.
 
22.
Shelley M.J., Tian F.R. and Wlodarski K. (1997): Hele-Shaw flow and pattern formation in a time-dependent gap.- Nonlinearity, vol.10, pp.1471-1495.
 
23.
Vasconcelos G.L. (1993): Exact solutions for steady bubbles in a Hele-Shaw cell with rectangular geometry. - Journal of Fluid Mechanics, vol.444, pp.175-198.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top