ORIGINAL PAPER
The effect of temperature on the vibration behavior of laminated composite plates
More details
Hide details
1
Génie civil et hydraulique, Laboratoire de recherche en génie civil (LRGC), Algeria
2
Energie Eolienne, Centre de Développement des Energies Renouvelables, Algeria
Submission date: 2023-11-30
Final revision date: 2024-03-09
Acceptance date: 2024-05-09
Publication date: 2024-09-12
Corresponding author
Houdayfa OUNIS
Energie Eolienne, Centre de Développement des Energies Renouvelables, BP. 62 Route de l'Observatoire Bouzareah, 16340, Algiers, Algeria
International Journal of Applied Mechanics and Engineering 2024;29(3):150-165
KEYWORDS
TOPICS
ABSTRACT
The present work is a contribution to the study of the effects of temperature on vibrations and stability of laminated composite plates using the finite element method. Thus, a DMQP/ml bending finite element with 4 nodes and 3 degrees of freedom based on the first order shear theory is extended to consider the effects of temperature on vibration and stability of laminated composite plates. The effect of the dependence of material properties on temperature as well as the effect of the of thermal stresses on the natural frequencies of laminated plates are studied simultaneously. A parametric study was carried out to highlight the effect of certain parameters on the vibration behavior of the laminated plates. The study showed that in most cases, the natural frequencies of vibration decrease with the increase in temperature. On the other hand, if the temperature inflicted on the plate coincides with the critical buckling temperature, the natural frequencies tend towards zero. Moreover, based on experimental data, this paper presents a study of the effect of temperature on the vibration behavior of a laminated T300/5208 Graphite/Epoxy plate. The study showed that temperature significantly changes the properties of the materials as well as the vibration behavior of the plate.
REFERENCES (62)
1.
Brigante D. (2013): New Composite Materials: Selection, Design, and Application.– Springer International Publishing.
2.
Ounis H., Tati A. and Benchabane A. (2014): Thermal buckling behaviour of laminated composite plates: a finite-element study.– Front. Mech. Eng., vol.9, No.1, pp.41-49, doi. 10.1007/s11465-014-0284-z.
3.
Singer J., Arbocz J. and Weller T. (2002): Buckling Experiments, Shells, Built-up Structures, Composites and Additional Topics.– Wiley.
4.
Galea S.C.P. and White R.G. (1993): The effect of temperature on the natural frequencies and acoustically induced strains in CFRP plates.– Journal of Sound and Vibration, vol.164, No.3, pp.399-424, doi. 10.1006/jsvi.1993.1225.
5.
Tauchert T. (2014): Plates with Temperature-Dependent Properties.– Springer Netherlands.
6.
Fauconneau G. and Marangoni R. D. (1970): Effect of a thermal gradient on the natural frequencies of a rectangular plate.– International Journal of Mechanical Sciences, vol.12, No.2, pp.113-122, doi. 10.1016/0020-7403(70)90011-1.
7.
Dhotarad M.S. and Ganesan N. (1978): Vibration analysis of a rectangular plate subjected to a thermal gradient.– Journal of Sound and Vibration, vol.60, No.4, pp.481-497, doi. 10.1016/S0022-460X(78)80087-X.
8.
Dhotarad M.S. and Ganesan N. (1979): Influence of thermal gradient on natural frequency of rectangular plate vibration.– Nucl. Eng. Des., vol.52, No.1, pp.71-81, doi. 10.1016/0029-5493(79)90009-8.
9.
Rao C.K. and Satyanarayana B. (1975): Effect of thermal gradient on frequencies of tapered rectangular plates.– AIAA Journal, vol.13, No.8, pp.1123-1126, doi. 10.2514/3.6965.
10.
Ganesan N. and Dhotarad M.S. (1979): Influence of a thermal gradient on the natural frequencies of tapered orthotropic plates.– Journal of Sound and Vibration, vol.66, No.4, pp.621-625, doi. 10.1016/0022-460X(79)90706-5.
11.
Tomar J.S. and Gupta A.K. (1983): Thermal effect on frequencies of an orthotropic rectangular plate of linearly varying thickness.– Journal of Sound and Vibration, vol.90, No.3, pp.325-331, doi. 10.1016/0022-460X(83)90715-0.
12.
Tomar J.S. and Gupta A.K. (1984): Thermal Effect on Axisymmetric Vibrations of an Orthotropic Circular Plate of Variable Thickness.– AIAA Journal, vol.22, No.7, pp.1015-1017, doi. 10.2514/3.48544.
13.
Tomar J.S. and Gupta A.K. (1985): Effect of thermal gradient on frequencies of an orthotropic rectangular plate whose thickness varies in two directions.– Journal of Sound and Vibration, vol.98, No.2, pp.257-262, doi. 10.1016/0022-460X(85)90389-X.
14.
Tomar J.S. and Tewari V.S. (1981): Effect of thermal gradient on frequencies of a circular plate of linearly varying thickness.– J. Non-Equilib. Thermodyn., vol.6, No.2, pp.115-122.
15.
Adeniji-Fashola A.A. and Oyediran A.A. (1988): Thermal gradient effects on the vibration of prestressed rectangular plates.– Acta Mechanica, vol.74, No.1-4, pp.235-248, doi. 10.1007/bf01194357.
16.
Gupta A.K., Johri T. and Vats R.P. (2007): Thermal effect on vibration of non-homogeneous orthotropic rectangular plate having bi-directional parabolically varying thickness.– Proceedings of the World Congress on Engineering and Computer Science "WCECS" (San Francisco, USA, 24-26 october 2007, 2007), [insert City of Publication],[insert 2007 of Publication].
17.
Gupta A.K. and Kaur H. (2008): Study of the effect of thermal gradient on free vibration of clamped visco-elastic rectangular plates with linearly thickness variation in both directions.– Meccanica, vol.43, No.4, pp.449-458, doi. 10.1007/s11012-008-9110-1.
18.
Gupta A.K. and Sharma P. (2010): Study the thermal gradient effect on frequencies of a trapezoidal plate of linearly varying thickness.– Applied Mathematics, vol.1, No.05, pp.357, doi. 10.4236/am.2010.15047.
19.
Gupta A.K., Tripti Johri and Vats R.P. (2010): Study of thermal gradient effect on vibrations of a non-homogeneous orthotropic rectangular plate having bi-direction linearly thickness variations.– Meccanica, vol.45, No.3, pp.393-400, doi. 10.1007/s11012-009-9258-3.
20.
Bargmann H. (1974): Recent developments in the field of thermally induced waves and vibrations.– Nucl. Eng. Des., vol.27, No.3, pp.372-385, doi. 10.1016/0029-5493(74)90181-2.
21.
Tauchert T.R. (1991): Thermally Induced flexure, buckling, and vibration of plates.– Applied Mechanics Reviews, vol.44, No.8, pp.347-360, doi. 10.1115/1.3119508.
22.
Noda N. (1991): Thermal stresses in materials with temperature-dependent properties.– Applied Mechanics Reviews, vol.44, No.9, pp.383-397, doi. 10.1007/978-94-015-8200-1_2.
23.
Hetnarski R.B. (2014): Encyclopedia of Thermal Stresses.– Springer Reference.
24.
Jeng-Shian C., Jiunn-Hsiung W. and Tseng-Zong T. (1992): Thermally induced vibration of thin laminated plates by finite element method.– Comput. Struct., vol.42, No.1, pp.117-128, doi. 10.1016/0045-7949(92)90541-7.
25.
Huang N.N. and Tauchert T.R. (1992): Thermally induced vibration of doubly curved cross-ply laminated panels.– Journal of Sound and Vibration, vol.154, No.3, pp.485-494, doi. 10.1016/0022-460X(92)90781-R.
26.
Noor A.K. and Burton W.S. (1992): Three-dimensional solutions for the free vibrations and buckling of thermally stressed multilayered angle-ply composite plates.– Journal of Applied Mechanics, vol.59, No.4, pp.868-877, doi. 10.1115/1.2894055.
27.
Bhimaraddi A. and Chandrashekhara K. (1993): Nonlinear vibrations of heated antisymmetric angle-ply laminated plates.– International Journal of Solids and Structures, vol.30, No.9, pp.1255-1268, doi. 10.1016/0020-7683(93)90015-Y.
28.
Chang J.-S. and Shyong J.-W. (1994): Thermally induced vibration of laminated circular cylindrical shell panels.– Compos. Sci. Technol., vol.51, No.3, pp.419-427, doi. 10.1016/0266-3538(94)90110-4.
29.
Liu C.-F. and Huang C.-H. (1996): Free vibration of composite laminated plates subjected to temperature changes.– Comput. Struct., vol.60, No.1, pp.95-101, doi. 10.1016/0045-7949(95)00358-4.
30.
Lee D.-M. and Lee I. (1997): Vibration behaviours of thermally postbuckled anisotropic plates using first-order shear deformable plate theory.– Comput. Struct., vol.63, No.3, pp.371-378, doi. 10.1016/S0045-7949(96)00378-1.
31.
Oh I. K., Han J.H. and Lee I. (2000): Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectric loads.– Journal of Sound and Vibration, vol.233, No.1, pp.19-40, doi. 10.1006/jsvi.1999.2788.
32.
Park J.-S., Kim J.-H. and Moon S.-H. (2004): Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers.– Compos. Struct., vol.63, No.2, pp.179-188, doi. 10.1016/S0263-8223(03)00146-6.
33.
Adams R. J. and Bert C. W. (1999): Thermoelastic vibrations of a laminated rectangular plate subjected to a thermal shock.– J. Therm. Stresses, vol.22, No.9, pp.875-895, doi. 10.1080/014957399280607.
34.
Librescu L. and Lin W. (1999): Non-linear response of laminated plates and shells to thermomechanical loading: Implications of violation of interlaminar shear traction continuity requirement.– International Journal of Solids and Structures, vol.36, No.27, pp.4111-4147, doi. 10.1016/S0020-7683(98)00185-1.
35.
Shen H.-S., Zheng J.J. and Huang X.L. (2003): Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundations.– Compos. Struct., vol.60, No.1, pp.57-66, doi. 10.1016/S0263-8223(02)00295-7.
36.
Shiau L.C. and Kuo S.Y. (2005): Free vibration of thermally buckled composite sandwich plates.– Journal of Vibration and Acoustics, vol.128, No.1, pp.1-7, doi. 10.1115/1.2149388.
37.
Singha M.K., Ramachandra L.S. and Bandyopadhyay J.N. (2006): Vibration behaviour of thermally stressed composite skew plate.– Journal of Sound and Vibration, vol.296, No.4-5, pp.1093-1102, doi. 10.1016/j.jsv.2006.01.070.
38.
Vangipuram P. and Ganesan N. (2007): Buckling and vibration of rectangular composite viscoelastic sandwich plates under thermal loads.– Compos. Struct., vol.77, No.4, pp.419-429, doi. 10.1016/j.compstruct.2005.07.012.
39.
Jeyaraj P., Ganesan N. and Padmanabhan C. (2009): Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment.– Journal of Sound and Vibration, vol.320, No.1-2, pp.322-338, doi. 10.1016/j.jsv.2008.08.013.
40.
Matsunaga H. (2007): Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading.– Compos. Struct., vol.77, No.2, pp.249-262, doi. 10.1016/j.compstruct.2005.07.002.
41.
Lal A. and Singh B.N. (2009): Stochastic free vibration of laminated composite plates in thermal environments.– J. Thermoplast. Compos. Mater., vol.23, pp.57-77, doi. 10.1177/0892705708103399.
42.
Chen C.-S., Chen C.-W., Chen W.-R. and Chang Y.-C. (2013): Thermally induced vibration and stability of laminated composite plates with temperature-dependent properties.– Meccanica, vol.48, No.9, pp.2311-2323, doi. 10.1007/s11012-013-9750-7.
43.
Garg A. and Chalak H.D. (2019): A review on analysis of laminated composite and sandwich structures under hygrothermal conditions.– Thin-Walled Structures, vol.142, pp.205-226, doi. 10.1016/j.tws.2019.05.005.
44.
Reddy J. N. (2003): Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition.– Taylor & Francis.
45.
Ounis H. (2015): Numerical study using FEM on the effect of temperature on vibration and buckling of laminated composite plates.– Ph.D., Université Mohamed Khider-Biskra, Biskra, Algérie.
46.
Sakami S. (2008): Numerical modeling of multilayer composite structures using a discrete Mindlin approach. The DDM (Displacement Discrete Mindlin) model.– PhD Thesis, University of Reims Champagne Ardenne).
47.
Katili I. (1993): A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate-theory and assumed shear strain fields - part II. An extended DKQ element for thick-plate bending analysis.– International Journal for Numerical Methods in Engineering, vol.36, No.11, pp.1885-1908, doi. 10.1002/nme.1620361107.
48.
Ayad R. (2002): Contribution to numerical modeling for the analysis of solids and structures, and for the shaping of non-Newtonian fluids. Application to packaging materials.– Habilitation to direct research, Université de Reims.
49.
Ayad R., Talbi N. and Ghomari T. (2009): Modified discrete Mindlin hypothesises for laminated composite structures.– Compos. Sci. Technol., vol.69, No.1, pp.125-128, doi. 10.1016/j.compscitech.2007.10.038.
50.
Sedira L., Ayad R., Sabhi H., Hecini M. and Sakami S. (2012): An enhanced discrete Mindlin finite element model using a zigzag function.– European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, vol.21, No.1-2, pp.122-140, doi. 10.1080/17797179.2012.702434.
51.
Chen L.-W. and Chen L.-Y. (1989): Thermal buckling behaviour of laminated composite plates with temperature-dependent properties.– Compos. Struct., vol.13, No.4, pp.275-287, doi. 10.1016/0263-8223(89)90012-3.
52.
Shariyat M. (2007): Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory.– Thin-Walled Structures, vol.45, No.4, pp.439-452, doi. 10.1016/j.tws.2007.03.004.
53.
Shen H.-S. (2001): Thermal postbuckling behaviour of imperfect shear deformable laminated plates with temperature-dependent properties.– Computer Methods in Applied Mechanics and Engineering, vol.190, No.40, pp.5377-5390, doi. 10.1016/S0045-7825(01)00172-4.
54.
Dhanaraj R. and Palaninathan (1990): Free vibration of initially stressed composite laminates.– Journal of Sound and Vibration, vol.142, No.3, pp.365-378, doi. 10.1016/0022-460X(90)90656-K.
55.
Murphy K.D., Virgin L.N. and Rizzi S.A. (1997): The effect of thermal prestress on the free vibration characteristics of clamped rectangular plates: theory and experiment.– Journal of Vibration and Acoustics, vol.119, No.2, pp.243-249, doi. 10.1115/1.2889710.
56.
Chen L.-W. and Chen L.-Y. (1991): Thermal postbuckling behaviours of laminated composite plates with temperature-dependent properties.– Compos. Struct., vol.19, No.3, pp.267-283, doi. 10.1016/0263-8223(91)90031-s.
57.
Adams D.S., Bowles D.E. and Herakovich C.T. (1986): Thermally induced transverse cracking in graphite-epoxy cross-ply laminates.– J. Reinf. Plast. Compos., vol.5, No.3, pp.152-169.
58.
Nagarkar A.P. and Herakovich C.T. (1979): Nonlinear Temperature Dependent Failure Analysis of Finite Width Composite Laminates.– DTIC Document.
59.
Hyer M.W., Herakovich C.T., Milkovich S.M. and Short Jr J.S. (1983): Temperature dependence of mechanical and thermal expansion properties of T300/5208 graphite/epoxy.– Composites, vol.14, No.3, pp.276-280, doi. 10.1016/0010-4361(83)90016-2.
60.
Jones R. M. (2005): Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates.– Composites Part A: Applied Science and Manufacturing, vol.36, No.10, pp.1355-1367, doi. 10.1016/j.compositesa.2005.01.028.
61.
Jones R.M. (2006): Buckling of Bars, Plates, and Shells.– Bull Ridge Publishing.
62.
Whitney J.M. and Ashton J.E. (1971): Effect of environment on the elastic response of layered composite plates.– AIAA Journal, vol.9, No.9, pp.1708-1713, doi. 10.2514/3.49976.