ORIGINAL PAPER
Thermal Diffusion and Diffusion Thermo Effects on Axi-Symmetric Boundary Layer Flow of Nanofluid Due to Non-Linear Stretching Sheet along the Radial Direction in presence of Magnetic field
 
More details
Hide details
1
Mathematics, Nizam College(A), Osmania University, India
 
2
Mathematics, Government Degree College, , , Telangana, India, India
 
3
Department of Mathematics, JNTUH College of Engineering, Science & Technology, India
 
These authors had equal contribution to this work
 
 
Submission date: 2024-03-12
 
 
Final revision date: 2024-06-11
 
 
Acceptance date: 2024-06-24
 
 
Publication date: 2024-09-12
 
 
Corresponding author
Upender Reddy Ganga   

Mathematics, Nizam College(A), Osmania University, Basheerbagh, 500001, Hyderabad, India
 
 
International Journal of Applied Mechanics and Engineering 2024;29(3):32-46
 
KEYWORDS
TOPICS
ABSTRACT
This work presents the results of numerical research that was conducted on the flow of axisymmetric nanofluids through a nonlinearly stretched sheet in the radial direction while a magnetic field influence was present. This model of a nanofluid demonstrates the presence of both the Brownian motion and the thermophoretic nanoparticle diffusion effects simul-taneously. When calculating the flow, both the Dufour effect and the Soret effect are taken into consideration. The conservation of energy, species, and momentum is represented by the equations for this process. The transformation of partial differential equations can be achieved by utilizing similarity conversions. These equations take into account all of the thermophysical char-acteristics. Therefore, a feasible solution may be found in the Runge-Kutta approach. Graphic representations of the profiles for velocity, temperature, and concentration, along with evaluations of a few other parameters, are shown When compared to some of the earlier studies, the R-K code's validity is shown to be beyond question. Brownian motion((Nb) and Dufour effect(Du) lead to an increase in the temperature gradient. The results provide some insight into how the nanofluid is used in various com-mercial endeavors.
REFERENCES (25)
1.
Choi S.U.S. and Estman J.A. (1995): Enhancing thermal conductivity of fluids with nanoparticles.– ASME, FED231/MD vol.66, pp.99-105.
 
2.
Buongiorno J. (2006): Convective transport in nanofluids.– ASME, J. Heat Transf., vol.128, No.3, pp.240-250, https://doi.org/10.1115/1.2150....
 
3.
Alkahtani B, Abel M.S. (2015): MHD boundary layer flow over a nonlinear stretching sheet in a nanofluid with convective boundary condition.– J. Comput. Theor. Nanosci., vol.12, No.12, pp.6020-6027, https://doi.org/10.1166/jctn.2....
 
4.
Abd Elazem N.Y. (2021): Numerical results for influence the flow of MHD nanofluids on heat and mass transfer past a stretched surface.– Nonlinear Eng.,vol.10, No.1, pp.28-38, https://doi.org/10.1515/nleng-....
 
5.
Yashkun U, Zaimi K, Abu Bakar NA, Ishak A. and Pop I. (2021): MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect.– Int. J. Numer. Methods Heat Fluid Flow, vol.31, No.3, pp.1014-1031, https://doi.org/10.1108/HFF-02....
 
6.
Patel H.R., Mittal A.S. and Darji R.R. (2019): MHD flow of micropolar nanofluid over a stretching shrinking sheet considering radiation.– Int. Commun. Heat Mass Transf., vol.108, article 104322, https://doi.org/10.1016/j.iche....
 
7.
Alotaibi H., Althubiti S., Eid M.R. and Mahny K.L. (2021): Numerical treatment of MHD flow of Casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects.– CMC-Computers, Materials & Continua, vol.66, No.1, pp.229-245, http://doi.org/10.32604/cmc.20....
 
8.
Ali B., Naqvi R.A., Haider A., Hussain D. and Hussain S. (2020): Finite element study of MHD impacts on the rotating flow of Casson nanofluid with the double diffusion Cattaneo-Christov heat flux model.– Mathematics, vol.8, No.9, p.1555, http://doi.org/10.3390/math809....
 
9.
Rasool G., Shafiq A. and Baleanu D. (2020): Consequences of Soret-Dufour effects, thermal radiation and binary chemical reaction on Darcy-Forchheimer flow of nanofluids.– Symmetry, vol.12, No.1, p.1421, http://doi.org/10.3390/sym1209....
 
10.
Zhang L., Bhatti M.M., Michaelides E.E. and Ellahi R. (2024): Characterizing quadratic convection and electromagnetically induced flow of couple stress fluids in microchannels.– Qual. Theory Dyn. Syst., vol.23, No.1, p.35,. https://doi.org/10.1007/s12346....
 
11.
Usman A.H., Shah Z., Humphries U.W., Kumam P. and Thounthong P. (2020): Soret, Dufour and activation energy effects on double diffusive convective couple stress micropolar nanofluid flow in a Hall MHD generator system.– AIP Adv., vol.10, No.7, article 075010, https://doi.org/10.1063/5.0014....
 
12.
Ahmed B., Akbar F., Ghaffari A., Ullah Khan S., Khan M.I. and Dharmendar Reddy Y. (2022): Soret and Dufour aspects of the third-grade fluid due to the stretching cylinder with the Keller box approach.– Waves Random Complex Media, vol.32, https://doi.org/10.1080/174550....
 
13.
Bejawada S.G. and Yanala D.R. (2021): Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate.– Heat Transfer, vol.50, No.8, pp.8553-8578, https://doi.org/10.1002/htj.22....
 
14.
Hayat T., Khan M.I., Waqas M. and Ahmed A. (2017): Stagnation point flow of hyperbolic tangent fluid with Soret and Dufour effects.Results Phy., vol.7, pp.2711-2717, https://doi.org/10.1016/j.rinp....
 
15.
Uwanta I.J., Asogwa K.K. and Ali U.A. (2012): MHD fluid flow over a vertical plate with Dufour and Soret effects. Int. J. Comput. Appl., vol.45, No.2, pp.8-16, http://doi.org/10.5120/6750-89....
 
16.
Mandal B., Bhattacharyya K., Banerjee A., Kumar Verma A. and Kumar Gautam A. (2020): MHD mixed convection on an inclined stretching plate in Darcy porous medium with Soret effect and variable surface conditions.– Nonlinear Engineering, vol.9, No.1, pp.457-469, https://doi.org/10.1515/nleng-....
 
17.
Srinivasacharya D., B. Mallikarjuna B. and Bhuvanavijaya. R. (2015): Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties.– Ain Shams Eng. J., vol.6, No.2, pp.553-564, http://doi.org/10.1016/j.asej.....
 
18.
Kumar A., Singh R., Seth G.S. and Tripathi R. (2018): Soret effect on transient magnetohydrodynamic nanofluid flow past a vertical plate through a porous medium with second order chemical reaction and thermal radiation.– Int. J. Heat Tech., vol.36, No.4, pp.1430-1437, https://doi.org/10.18280/ijht.....
 
19.
Bhatti M.M., Sarris I., Michaelides E.E. and Ellahi R. (2024): Sisko fluid flow through a non-Darcian micro-channel: An analysis of quadratic convection and electro-magneto-hydrodynamics.– Therm. Sci. Eng. Prog., vol.50, p.102531, https://doi.org/10.1016/j.tsep....
 
20.
Arulmozhi S., Sukkiramathi K., Santra S.S., Edwan R., Fernandez-Gamiz U. and Noeiaghdam S. (2022): Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate.– Results in Engineering, vol.14, p.100394., https://doi.org/10.1016/j.rine....
 
21.
Nawaz M. and Hayat T. (2014): Axisymmetric stagnation-point flow of nanofluid over a stretching surface.– Advances in Applied Mathematics and Mechanics, vol.6, No.2, pp.220-232., https://doi.org/10.4208/aamm.2....
 
22.
Mustafa M., Khan J.A., Hayat T. and Alsaedi A. (2015): Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet.– International Journal of Non-Linear Mechanics, vol.71, pp.22-29, https://doi.org/10.1016/j.ijno....
 
23.
Ali B., Naqvi R.A., Nie Y., Khan S.A., Sadiq M.T., Rehman A.U. and Abdal S. (2020): Variable viscosity effects on unsteady MHD an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: Fem approach.– Symmetry, vol.12, No.2, p.234, https://doi.org/10.3390/sym120....
 
24.
Faiz M., Habib D., Siddique I., Awrejcewicz J., Pawłowski W., Abdal S. and Salamat N. (2022): Multiple slip effects on time dependent axisymmetric flow of magnetized Carreau nanofluid and motile microorganisms.– Scientific Reports, vol.12, No.1, p.14259, https://doi.org/10.1038/s41598....
 
25.
Mahabaleshwar U.S., Maranna T., Perez L.M. and Nayakar S.R. (2023): An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface.– Journal of Magnetism and Magnetic Materials, vol.571, p.170538, https://doi.org/10.1016/j.jmmm....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top