ORIGINAL PAPER
Thermal efficiency analysis of the rotary kiln based on the wear of the lining
,
 
 
 
 
More details
Hide details
1
Department of Chemical, Polymer and Silicate Engineering, Faculty of Chemical Engineering, National Technical University of Ukraine, Kyiv, 03056, UKRAINE
 
2
Department of Economic and Social Geography, Faculty of Geography, Taras Shevchenko National University of Kyiv, Kyiv, 01033, UKRAINE
 
 
Online publication date: 2023-06-28
 
 
Publication date: 2023-06-28
 
 
International Journal of Applied Mechanics and Engineering 2023;28(2):125-138
 
KEYWORDS
ABSTRACT
The thickness of the lining is reduced from 230 mm to 80 mm due to long-term wear, resulting in low thermal efficiency of the rotary kiln. The thermal resistance, which is positively correlated with the thickness of the lining, is one of the most important factors determining the thermal efficiency of the rotary kiln. The thermal efficiency of the rotary kiln can be improved by introducing insulation material with lower thermal conductivity into the lining. The average heat flux is used as the thermal efficiency evaluation index of the 4×60 m rotary kiln under no-load conditions in this work. A numerical experiment was conducted for the temperature and heat flux of the inner surface of the lining, as well as the temperature of the outer surface of the shell during the wear of the lining. There are two cases considered, one with and one without insulation materials in lining. According to the analysis, when the lining in the high temperature zone of the rotary kiln wears to 80 mm, the average heat flux of the inner surface of the lining increases by 105.03%. However, after the addition of insulation material, the average heat flux on the inner surface of the lining increases by 40.38% (wears to 80 mm). Compared to the thermal efficiency of the rotary kiln without heat insulation material, the average heat flux of the inner surface of the lining is reduced by 36.36% (230 mm), and it is reduced by 99.01% (wears to 80 mm). A significant advantage of this solution is that it can increase the thermal efficiency of the rotary kiln, improve the insulation performance of the lining, reduce heat loss to the environment through the shell, and the results obtained can be used for the latest equipment design and existing equipment improvements.
 
REFERENCES (29)
1.
Igliński B. and Buczkowski R. (2017): Development of cement industry in Poland - History, current state, ecological aspects. A review.– Journal of Cleaner Production, vol.141, pp.702-720, https://doi:10.1016/j.jclepro.....
 
2.
Nielsen A.R., Aniol R.W., Larsen M.B., Glarborg P. and Dam-Johansen K. (2011): Mixing large and small particles in a pilot scale rotary kiln.– Powder Technology, vol.210, No.3, pp.273-280, https://doi:10.1016/j.powtec.2....
 
3.
Schneider M., Romer M., Tschudin M. and Bolio H. (2011): Sustainable cement production-present and future.– Cement and Concrete Research, vol.41, No.7, pp.642-650, https://doi:10.1016/j.cemconre....
 
4.
Xu D., Cui Y., Li H., Yang K., Xu W. and Chen Y. (2015): On the future of Chinese cement industry.– Cement and Concrete Research, vol.78, pp.2-13, https://doi:10.1016/j.cemconre....
 
5.
Gaurav G.K. and Khanam S. (2017): Computational fluid dynamics analysis of sponge iron rotary kiln.– Case Studies in Thermal Engineering, vol.9, pp.14-27, https://doi:10.1016/j.csite.20....
 
6.
Piton M., Huchet F., Le Corre O., Le Guen L. and Cazacliu B. (2015): A coupled thermal-granular model in flights rotary kiln: industrial validation and process design.– Applied Thermal Engineering, vol.75, pp.1011-1-21, https://doi:10.1016/j.applther....
 
7.
Boateng A.A. and Barr P.V. (1996): A thermal model for the rotary kiln including heat transfer within the bed.– International Journal of Heat and Mass Transfer, vol.39, pp.2131-2147, https://doi.org/10.1016/0017-9....
 
8.
Mittal A. and Rakshit D. (2020): Energy audit and waste heat recovery from kiln hot shell surface of a cement plant.– Thermal Science and Engineering Progress, vol.19, pp.100599, https://doi:10.1016/j.tsep.202....
 
9.
Gürtürk M. and Oztop H.F. (2014): Energy and exergy analysis of a rotary kiln used for plaster production.– Applied Thermal Engineering, vol.67, No.1-2, pp.554-565, https://doi:10.1016/j.applther....
 
10.
Shcherbina V. and Shvachko D. (2020): Modeling of the process of non-stationary heat exchange in the lining of a rotating unit.– CHEERS, vol.2, pp.20-31, https://doi.org/10.20535/2617-....
 
11.
Nafsun A.I., Herz F., Specht E., Komossa H., Wirtz S., Scherer V. and Liu X. (2017): Thermal bed mixing in rotary drums for different operational parameters.– Chemical Engineering Science, vol.160, pp.346-353, https://doi:10.1016/j.ces.2016....
 
12.
Nafsun A.I. and Herz F. (2016): Experiments on the temperature distribution in the solid bed of rotary drums.– Applied Thermal Engineering, vol.103, pp.1039-1047, https://doi:10.1016/j.applther....
 
13.
Villalba Weinberg A., Varona C., Chaucherie X., Goeuriot D. and Poirier J. (2016): Extending refractory lifetime in rotary kilns for hazardous waste incineration.– Ceramics International, vol.42, No.15, pp.17626-17634, https://doi:10.1016/j.ceramint....
 
14.
Slovikovskii V.V. (2008): Rotary kiln corrosion-erosion-resistant linings.– Refract Ind. Ceram., vol.49, No.2, pp.99-102, https://doi:10.1007/s11148-008....
 
15.
Atmaca A. and Yumrutaş R. (2014): Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry.– Applied Thermal Engineering, vol.66, No.1-2, pp.435-444, https://doi:10.1016/j.applther....
 
16.
Sharikov Yu.V. and Markus A.A. (2014): Mathematical modeling of thermal fields in a fragment of the lining of a rotary kiln.– Metallurgist, vol.57, No.11, pp.1062-1066, https://doi:10.1007/s11015-014....
 
17.
Shcherbina V., Shvachko D. and Borshchik S. (2019): Heat exchange simulation in energy zones of a rotary kiln with change of heat resistance of the body.– TAPR, vol.60, No.1, pp.36-41, https://doi:10.15587/2312-8372....
 
18.
Trotsenko L. N. (2016): Features of the design and thermal operation of rotary kilns and promising directions for their improvement.– Energy Technologies and Resource Saving, vol.4, pp.61-70, URI: http://dspace.nbuv.gov.ua/hand....
 
19.
Yin Q., Du W.J., Ji X.L. and Cheng L. (2017): Optimization design based on the thermal resistance analyses of heat recovery systems for rotary kilns.– Applied Thermal Engineering, vol.112, pp.1260-1270, https://doi:10.1016/j.applther....
 
20.
Shcherbina V. and Shvachko D. (2022): The effect of thermal insulation of the lining on the heat exchange of rotating apparatuses.– CHEERS, vol.2, pp.22-33, https://doi:10.20535/2617-9741....
 
21.
Herz F. (2018): Prozessmodellierung von direkt befeuerten drehrohröfen zur beurteilung der thermischen belastung des feuerfestmaterials.– Keramische Zeitschrift, vol.70, No.1, pp.26-35, https://doi:10.1007/s42410-018....
 
22.
Li P., Cai L.L., Zhou P.W., Tang D., Zhai P.C.and Zhang Q.J. (2015): A thermoelectric waste-heat-recovery system for portland cement rotary kilns.– Journal of Electronic Materials, vol.44, No.6, pp.1750-1762, https://doi:10.1007/s11664-014....
 
23.
Alonso E., Gallo A., Roldán M.I., Pérez-Rábago C.A. and Fuentealba E. (2017): Use of rotary kilns for solar thermal applications: review of developed studies and analysis of their potential.– Solar Energy, vol.44, pp.90-104, https://doi:10.1016/j.solener.....
 
24.
Byung Soo Joo, Yeon Ha Chang, Hyung Jo Seo and Ho Jang (2019): Effects of binder resin on tribological properties and particle emission of brake linings.– Wear, vol.434, vol.435, pp.202195, https://doi.org/10.1016/j.wear....
 
25.
Roshchupkina I.Yu., Abdrakhimova E.S., Kairakbaev A.K., Abdrakhimov V.Z. and Kolpakov A.V. (2015): Innovative technology developments aimed at structural-chemical modification of lining materials based on nonferrous metalurgy waste and phosphate binders.– Refractories and Industrial Ceramics, vol.34, No.4, pp.398-401, https://doi:10.1007/s11148-015....
 
26.
Wilson D. Guillin-Estrada, Rafael Albuja, Ivan B. Dávila, Bernardo S. Rueda, Lesme Corredor, Arturo Gonzalez-Quiroga, Heriberto Maury (2022): Transient operation effects on the thermal and mechanical response of a large-scale rotary kiln.– Results in Engineering, vol.14, 100396, https://doi.org/10.1016/j.rine....
 
27.
Scherbyna V., Gondlyakh A., Sokolskiy A., Shilovich Y. and Bulavina N. (2023): Failure analysis of refractories in rotary kilns.– Advanced Manufacturing Processes IV, pp.562-573, https://doi.org/10.1007/978-3-....
 
28.
Shubin, V.I. (2001): The effect of temperature on the lining of rotary cement kilns.– Refractories and Industrial Ceramics, vol.42, pp.216221, https://doi.org/10.1023/A:1012....
 
29.
Li G., Liu Z., Jiang G., Liu H. and Xiong H. (2015): Numerical simulation of the influence factors for rotary kiln in temperature field and stress field and the structure optimization.– Advances in Mechanical Engineering, vol.7, No.6, pp.1-15, https://doi.org/10.1177/168781....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top