ORIGINAL PAPER
Thermoelastic Analysis of Pressurized Hollow Spherical Vessels with Arbitrary Radial Non-Homogeneity
,
 
 
 
More details
Hide details
1
Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):192-205
 
KEYWORDS
ABSTRACT
In this study, a general analysis of one dimensional steady-state thermal stresses of a functionally graded hollow spherical vessel with spherical isotropy and spherically transversely isotropy is presented with material properties of arbitrary radial non-homogeneity. The material properties may arbitrarily vary as continuous or piecewise functions. The boundary value problem associated with a thermo-elastic problem is converted to an integral equation. Radial and tangential thermal stress components distribution can be determined numerically by solving the resulting equation. The influence of the gradient variation of the material properties on the thermal stresses is investigated and the numerical results are presented graphically.
REFERENCES (12)
1.
Atkinson K.E. and Shampine L.F. (2008): Algorithm 876: Solving Fredholm integral equations of the second kind in MATLAB.– ACM Transactions on Mathematical Software, vol.34, No.4, Article No.21, pp.1-20. Doi: https://doi.org/10.1145/137759....
 
2.
Eslami M.R., Babaei M.H. and Poultangari R. (2005): Thermal and mechanical stresses in a functionally graded thick sphere.– Int. J. Pres. Ves. Pip., vol.82, pp.522-527.
 
3.
Guven U. and Baykara C. (2001): On stress distribution in functionally graded isotropic spheres subjected to internal pressure.– Mech. Res. Commun., vol.28, pp.277-281.
 
4.
Li X.F., Peng X.L. and Kang Y.A. (2009): Pressurized hollow spherical vessels with arbitrary radial non-homogeneity.– AIAA Journal, vol.47, pp.2262-2265.
 
5.
Nayak P., Mondal S.C. and Nandi A. (2011): Stress, strain and displacement of a functionally graded thick spherical vessel.– Int. J. Eng. Sci. Techol., vol.3, pp.2659-2671.
 
6.
Nejad M.Z., Abedi M., Lotfian M.H. and Ghannad M. (2016): Exact and numerical elastic analysis for the FGM thick-walled cylindrical pressure vessels with exponentially-varying properties.– Arch. Metall. Mater., vol.61, pp.1649-1654.
 
7.
Peng X.L. and Li X.F. (2010): Thermoelastic analysis of a cylindrical vessel of functionally graded materials.– Int. J. Pres. Ves. Pip., vol.87, pp.203-210.
 
8.
Rani P., Singh K. and Muwal R. (2021): Thermal stresses due to non-uniform internal heat generation in functionally graded hollow cylinder.– Int. J. Appl. Mech. Eng., vol.6, pp.186-200.
 
9.
Sahu R.K., Sodhi L., Bhowmick S. and Thawait A.K. (2020): Exact solution for the thermo-elastic deformation and stress states of FG rotating spherical body.– J. Mech. Behav. Mater., vol.29, pp.133-146.
 
10.
Sharma D. and Kaur R. (2020): Thermoelastic analysis of FGM hollow cylinder for variable parameters and temperature distributions using FEM.– Nonlinear Eng., vol.9, pp.256-264.
 
11.
Yildirim V. (2018): Exact thermo-mechanical analysis of functionally graded thick-walled spheres.– Mech. Mech. Eng., vol.22, pp.1197-1221.
 
12.
You L.H., Zhang J.J. and You X.Y. (2005): Exact analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials.– Int. J. Pres. Ves. Pip., vol.82, pp.347-354.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top