ORIGINAL PAPER
Thermosolutal Instability in Compressible Viscoelastic Dusty Fluid through Porous Medium
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, ICDEOL Himachal Pradesh University Shimla-171005, INDIA
 
 
Online publication date: 2013-04-19
 
 
Publication date: 2013-03-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(1):99-112
 
KEYWORDS
ABSTRACT
Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.
 
REFERENCES (21)
1.
Beavers G.S., Sparrow E.M. and Magnuson R.A. (1970): Experiments on coupled parallel flows in a channels and a bounding porous medium. - J. Basic Engng. Trans. ASME, vol.D92, pp.843-845.
 
2.
Bhatia P.K. and Steiner J.M. (1972): Convective instability in a rotating viscoelastic fluid layer. - Z. Angew. Math. Mech., vol.52, pp.321-324.
 
3.
Brakke M.K. (1955): Zone electrophoresis of dyes, proteins and viruses in density-gradient columns of sucrose solutions. - Arch. Biochem. Biophysics, vol.55, pp.175-190.
 
4.
Chakraborty G. and Sengupta P.R. (1994): MHD flow of unsteady viscoelastic (Walters Liquid B’) conducting fluid between two porous concentric circular cylinders. - Proc. Nat. Acad. Sciences India, vol.64, pp.75-81.
 
5.
Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability. - Oxford, UK: Clarendon Press.
 
6.
Joseph D.D. and Tao L.N. (1964): The effect of permeability on the slow motion of a porous sphere in a viscous liquid. - Zeit. Angew. Math. Mech., vol.44, pp.361-365.
 
7.
Kumar P. (2001): Effect of rotation on thermal instability in Walters B’ elastico-viscous fluid. - Proc. Nat. Acad. Sci. India, vol.71, pp.33-41.
 
8.
Kumar P., Mohan H. and Singh G.J. (2006): Stability of two superposed viscoelastic fluid-particle mixtures. - Z. Angew. Math. Mech., vol.86, pp.72-77.
 
9.
Lister P.F. (1972): On the thermal balance of a mid-ocean ridge. - Geophysical J. Royal Astronomical Soc., vol.26, pp.515-535.
 
10.
Linden P.F. (1974): Salt fingers in a steady shear flow. - Geophys. Fluid Dynamics, vol.6, pp.1.
 
11.
Nason P., Schumaker V., Halsall B. and Schwedes J.: Formation of a streaming convective disturbance which may occur at one gravity during preparation of samples for zone centrifugation. - Biopolymers, vol.7, pp.241-249.
 
12.
Palaniswamy V.I. and Purushotham C.M. (1981): Stability of shear flow of stratified fluids with fine dust. - Phys. Fluids, vol.24, pp.1224-1229.
 
13.
Scanlon J.W. and Segel L.A. (1973): Some effects of suspended particles on the onset of Benard convection. - Phys. Fluids, vol.16, pp.1573-1578.
 
14.
Sharma R.C. (1976): Effect of rotation on thermal instability of a viscoelastic fluid. - Acta Physica Hung., vol.40, pp.11-17.
 
15.
Sharma R.C. and Kumar P. (1997): On the stability of two superposed Walters elastico-viscous liquid B’. - Czech. J. Phys., vol.47, pp.197-204.
 
16.
Sharma R.C. and Kumar P. (1998): Rayleigh-Taylor instability of two superposed conducting Walters B’ elasticoviscous fluids in hydromagnetics. - Proc. Nat. Acad. Sci. India, vol.68, pp.151-161.
 
17.
Spiegel E.A. and Veronis G. (1960): On the Boussinesq approximation for a compressible fluid. - Astrophys. J., vol.131, pp.442-447.
 
18.
Stommel H. and Fedorov K.N. (1967): Small scale structure in temperature and salinity near timor and mindano. - Tellus, vol.19, pp.306-325.
 
19.
Veronis G. (1965): On finite amplitude instability in thermohaline convection. - J. Marine Research, vol.23, pp.1-17.
 
20.
Walters K. (1960): The motion of elastico-viscous liquid contained between coaxial cylinders. - J. Mech. Appl. Math., vol.13, pp.444-453.
 
21.
Walters K. (1962): The solution of flow problems in case of materials with memory. - J. Mecanique, vol.1, pp.469-479.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top