ORIGINAL PAPER
Tribological properties of DLC and GLC coating for automotive engine components application under lubrication
More details
Hide details
1
Electromechanical Engineering Department, Engineering College, University of Samarra, Samarra, 34010–Iraq
2
Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University
Eflatun Sk. No:8, 34940 Tuzla, Istanbul, TURKEY
3
Nanotechnology and Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
4
Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UNITED ARAB EMIRATES
Online publication date: 2023-12-19
Publication date: 2023-12-23
Corresponding author
Riyadh A. AL-SAMARAI
Electromechanical Engineering Department, Engineering College, University of Samarra
Samarra, 34010–Iraq
International Journal of Applied Mechanics and Engineering 2023;28(4):10-25
KEYWORDS
ABSTRACT
Modern automotive designs are needed to increase mechanical and thermal loads that have longer lifespans and are lighter. The power transmissions and motors often use low-friction hard coatings to prevent wear and reduce friction. The Cr-doped graphite-like carbon method is employed for evaluating coating friction and responses to chromium-doped graphite-like carbon (Cr-GLC) under lubrication. Cr-GLC coatings and chromium-doped diamond-like carbon (Cr-DLC) coatings are arranged using physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition (PECVD), respectively. The results have demonstrated in comparison to the dry friction coefficient, the friction coefficient under lubrication conditions has been reduced by 40%. Due to its excellent frictional physicochemical properties and compact microstructure, Cr-DLC has an optimum tribological resistance that is significantly higher than that of Cr-GLC. Viscosity, corrosivity, and coating microstructure are used to measure the impact of composite elements. The most ideal characteristics of the Cr-GLC coating are attributed to the non-reaction of additives in oil with friction surfaces.
ACKNOWLEDGEMENTS
This work is supported through the University of Samarra. The authors would like to thank the University Sains Malaysia (USM) for all tests which were are performed in their laboratories.
REFERENCES (60)
1.
Reitschuster S., Maier E., Lohner T., Stahl K., Bobzin K., Kalscheuer C. and Hartl M. (2022): DLC-coated thermoplastics: tribological analyses under lubricated rolling-sliding conditions.– Tribology Letters, vol.70, No.4, p.121,
https://link.springer.com/arti....
2.
Liu K., Kang J.J., Zhang G.A., Lu Z.B. and Yue W. (2021): Effect of temperature and mating pair on tribological properties of DLC and GLC coatings under high pressure lubricated by MoDTC and ZDDP.– Friction, vol.9, pp.1390-1405,
https://link.springer.com/arti....
3.
Qiang L., Gao K., Zhang L., Wang J., Zhang B. and Zhang J. (2015): Further improving the mechanical and tribological properties of low content Ti-doped DLC film by W incorporating.– Appl. Surf. Sci., vol.353, pp.522-529,
http://dx.doi.org/10.1016/j.ap....
4.
Masuko M., Ono T., Aoki S., Suzuki A. and Ito H. (2015): Friction and wear characteristics of DLC coatings with different hydrogen content lubricated with several Mo-containing compounds and their related compounds.– Tribol. Int., vol.82, pp.350-357,
https://doi.org/10.1016/S0043-....
5.
Hasl C., Illenberger C., Oster P., Tobie T. and Stahl K. (2018): Potential of oil-lubricated cylindrical plastic gears.– Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol.12, No.1, p.JAMDSM0016-JAMDSM0016,
https://doi.org/10.1299/jamdsm....
6.
Ziegltrum A., Maier E., Lohner T. and Stahl K. (2020): A numerical study on thermal elastohydrodynamic lubrication of coated polymers.– Tribology Letters, vol.68, No.2, p.71.
https://link.springer.com/arti....
7.
Reitschuster S., Maier E., Lohner T. and Stahl K. (2020): Friction and temperature behavior of lubricated thermoplastic polymer contacts.– Lubricants, vol.8, No.6, p.67,
https://doi.org/10.3390/lubric....
8.
Wang L, Guan X, Zhang G. (2013): Friction and wear behaviors of carbon based multilayer coatings sliding against different rubbers in water environment.– Tribol. Int., vol.64, pp.69-77,
https://doi.org/10.1016/j.trib....
9.
Bobzin K., Brögelmann T., Kalscheuer C., Thiex M., Ebner M., Lohner T. and Stahl K. (2018): A contribution to the thermal effects of DLC coatings on fluid friction in EHL contacts.– Lubrication Science, vol.30, No.6, pp.285-299.
https://doi.org/10.1002/ls.142....
10.
Li Z., Guan X., Wang Y., Li J., Cheng X., Lu X., Wang L. and Xue Q. (2017): Comparative study on the load carrying capacities of DLC, GLC and CrN coatings under sliding-friction condition in different environments.– Surf. Coat Technol., vol.321, pp.350-357,
https://doi.org/10.1016/j.surf....
11.
Aboua K., Umehara N., Kousaka H., Deng X., Tasdemirb H., Mabuchi Y., Higuchi T. and Kawaguchi M. (2017): Effect of carbon diffusion on friction and wear properties of diamond-like carbon in boundary base oil lubrication.– Tribol. Int., vol.113, pp.389-98,
https://doi.org/10.1016/j.trib....
12.
Aboua K., Umehara N., Kousaka H., Tokoroyama T., Murashima M., Mabuchi Y., Higuchi T. and Kawaguchi M. (2019): Effect of carbon diffusion on friction and wear behaviors of diamond-like carbon coating against germanium in boundary base oil lubrication.– Tribol. Lett., vol.2, pp.65-67,
https://doi.org/10.1007/s11249....
13.
De Barros Bouchet M.I., Martin J.M., Le-Mogne T. and Vacher B. (2005): Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives.– Tribology International, vol.38, No.3, pp.257-264,
https://doi.org/10.1016/j.trib....
14.
Zhuang W., Fan X., Li W., Li H., Zhang L., Peng J., Cai Z., Mo J., Zhang G. and Zhu M. (2018): Comparing space adaptability of diamond-like carbon and molybdenum disulfide films toward synergistic lubrication.– Carbon vol.134, pp.163-173,
https://doi.org/10.1016/j.carb....
15.
Maier E., Ziegltrum A., Lohner T. and Stahl K. (2017): Characterization of TEHL contacts of thermoplastic gears.– Forschung im Ingenieurwesen, vol.81, No.2-3, pp.317-324,
https://link.springer.com/arti....
16.
Feng X. and Xia Y. (2012): Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions.– Appl. Surf. Sci., vol.258, pp.2433-2438,
https://doi.org/10.1016/j.apsu....
17.
Rothammer B., Marian M., Neusser K., Bartz M., Böhm T., Krauß S. and Wartzack S. (2021): Amorphous carbon coatings for total knee replacements. Part II: Tribological behavior.– Polymers, vol.13, No.11, p.1880,
https://doi.org/10.3390/polym1....
18.
Rothammer B., Neusser K., Marian M., Bartz M., Krauß S., Böhm T. and Wartzack S. (2021): Amorphous carbon coatings for total knee replacements. Part I: Deposition, cytocompatibility, chemical and mechanical properties. Polymers, vol.13, No.12, p.1952,
https://doi.org/10.3390/polym1....
19.
Sui X., Liu J., Zhang S., Yang J. and Hao J. (2018): Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance.– Appl. Surf. Sci., vol.439, pp.24-32,
https://doi.org/10.1016/j.apsu....
20.
Bobzin K., Kalscheuer C., Thiex M., Sperka P., Hartl M., Reitschuster S. and Stahl K. (2023): DLC-Coated Thermoplastics: Tribological Analyses Under Dry and Lubricated Sliding Conditions. Tribology Letters, vol.71, No.1, p.2,
https://link.springer.com/arti....
21.
Jo Y., Zhang T., Son M. and Kim K. (2018): Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process.– Appl. Surf. Sci., vol.433, pp.1184-91,
https://doi.org/10.1016/j.apsu....
22.
Khalaj Z., Ghoranneviss M., Vaghri E., Saghaleini A. and Diudea M.V. (2012): Deposition of DLC film on stainless steel substrates coated by nickel using PECVD method.– Acta Chim. Slov. vol.59, p.338.
https://pubmed.ncbi.nlm.nih.go....
23.
Ebrahimi M., Mahboubi F. and Naimi-Jamal M. (2015): Wear behavior of DLC film on plasma nitrocarburized AISI 4140 steel by pulsed DC PACVD: effect of nitrocarburizing temperature.– Diam. Relat. Mater., vol.52, pp.32-37,
https://doi.org/10.1016/j.diam....
24.
Dong D., Jiang B., Li H., Du Y. and Yang C. (2018): Effect of graphite target power density on tribological properties of graphite-like carbon films.– Appl. Surf. Sci., vol.439, pp.900-909.
https://doi.org/10.1016/j.apsu....
25.
Yilmaz M., Lohner T., Michaelis K. and Stahl K. (2019): Minimizing gear friction with water-containing gear fluids.– Forschung im Ingenieurwesen, vol.83, No.3, pp.327-337,
https://doi.org/10.1007/s10010....
26.
Al-Samarai R.A., Haftirman K.R.A. and Al-Douri Y. (2012): The influence of roughness on the wear and friction coefficient under dry and lubricated sliding.– Int. J. Sci. Eng. Res., vol.3, No.4, pp.1-6.
27.
Ziegltrum A., Maier E., Lohner T. and Stahl K. (2020): A numerical study on thermal elastohydrodynamic lubrication of coated polymers.– Tribology Letters, vol.68, No.2, p.71,
https://link.springer.com/arti....
28.
Wu D., Ren S., Pu J., Lu Z., Zhang G. and Wang L.A. (2018): Comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications.– Appl. Surf. Sci., vol.441, pp.884-894,
https://doi.org/10.1016/j.apsu....
29.
Chen L., Liu Z. and Shen Q. (2018): Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys.– Tribol. Int., vol.122, pp.84-95,
https://doi.org/10.1016/j.trib....
30.
Sun J., Fu Z., Zhang W., Wang C., Yue W., Lin S. and Dai M. (2013): Friction and wear of Cr-doped DLC films under different lubrication conditions.– Vacuum, vol.94, pp.1-5,
https://doi.org/10.1016/j.vacu....
31.
Tokoroyama T., Hattori T., Umehara N., Kousaka H., Manabe K., Kishi M. and Fuwa Y. (2016): Ultra-low friction properties of carbon nitride tantalum coatings in the atmosphere.– Tribol. Int., vol.103, pp.388-393,
https://doi.org/10.1016/j.trib....
32.
Al-Douri Y, Al-Samarai R.A., Abdulateef S.A., Odeh A.A., Badi N. and Voon C.H. (2019): Nanosecond pulsed laser ablation to synthesize GaO colloidal nanoparticles: Optical and structural properties.– Optik, vol.178, pp.337-342,
https://doi.org/10.1016/j.ijle....
33.
Qi J., Wang L., Yan F. and Xue Q. (2013): The tribological performance of DLC-based coating under the solid-liquid lubrication system with sand-dust particles.– Wear, vol. 297, pp.972-985,
https://doi.org /10.1016/j.wear.2012.11.015.
34.
Duminica F., Belchi R., Libralesso L. and Mercier D. (2018): Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications.– Surf. Coat. Technol., vol.33, pp.396-403,
https://doi.org/10.1016/j.surf....
35.
Cao Z., Xia Y., Liu L. and Feng X. (2019): Study on the conductive and tribological properties of copper sliding electrical contacts lubricated by ionic liquids.– Tribol. Int., vol.130, pp.27-35,
https://doi.org/10.1016 /j.triboint.2018.08.033.
37.
Bai W., Li L., Xie Y., Liu D., Wang X., Jin G. and Tu J. (2016): Corrosion and tribocorrosion performance of M (M_Ta, Ti) doped amorphous carbon multilayers in Hank’s solution.– Surf. Coat Technol., vol.305, pp.11-22,
https://doi.org/10.1016/j.surf....
38.
He D., Shang L., Lu Z., Zhang G., Wang L. and Xue Q. (2017): Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content.– Surf. Coat Technol. vol.329, pp.11-18.
https://doi.org/10.1016/j.surf....
39.
Reitschuster S., Maier E., T. Lohner T., Stahl K., Bobzin K., Kalscheuer C., Thiex M., Sperka P. and Hartl M. (2022): DLC-coated thermoplastics: tribological analyses under lubricated rolling-sliding conditions.– Tribology Letters, vol.70, Article No.121, pp.1-16,
https://doi.org/10.1007/s11249....
40.
Neuville S. (2011): Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films.– Surf. Coat Technol., vol.206, pp.703-726,
https://doi.org/10.1016/j.surf....
41.
Ye Y., Wang Y., Chen H., Li J., Yao Y. and Wang C. (2015): Doping carbon to improve the tribological performance of CrN coatings in seawater.– Tribol. Int., vol.90, pp.362-371,
https://doi.org/10.1016/j.trib....
42.
Hua C., Guo J., Liu J., Yan X., Zhao Y., Chen L., Wei J., Hei L. and Li C. (2016): Influence of diamond surface chemical states on the adhesion strength between Y2O3 film and diamond substrate.– Mater. Des., vol.105, pp.81-88,
https://doi.org/10.1016/j.matd....
43.
Zhu S. and Huang P. (2017): Influence mechanism of morphological parameters on tribological behaviors based on bearing ratio curve.– Tribol. Int., vol.109, pp.10-18,
https://doi.org/10.1016/j.trib....
44.
Erdemir A. (2001): The role of hydrogen in tribological properties of diamond-like carbon films.– Surf. Coat Technol., vol.146, pp.292-297,
https://doi.org/10.1016/S0257-....
45.
Al-Samarai R.A. and Al-Douri Y. (2018): Lubricated conditions imposed on coating multi-layer on wear resistance under Cr2O3 effect.– Materials Research, vol.21, No.4,
http://dx.doi.org/10.1590/1980....
47.
Han Y., Qiao D., Zhang S. and Feng D. (2017): Influence of phosphate and phosphonate ionic liquid structures on lubrication for different alloys (Mg, Al, Cu).– Tribol. Int., vol.114, pp.469-477,
https://doi.org /10.1016 /j.triboint.2017.05.019.
48.
Liu X., Pu J., Wang L. and Xue Q. (2013): Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications.– J. Mater. Chem., vol.1, pp.3797-3809,
https://doi.org/10.1039/C3TA00....
50.
Fuji J., Shuji T., Jumbo F., Saraki G. and Tanemura M. (2023): Optical analysis of multi-crystalline Si surface.– Experimental and Theoretical NANOTECHNOLOGY, vol.7, pp.273-282,
https://doi.org/10.56053/7.2.2....
51.
Pasal M.C. and Aras C.M. (2023): Investigation of semi-metallic properties of GdS band TbSb compounds.– Experimental and Theoretical NANOTECHNOLOGY, vol.7, pp.371-380,
https://doi.org/10.56053/7.2.3....
52.
Jabbar O. and Reshak A.H. (2023): Structural, electronic, and optoelectronic properties of XYZ2 (X=Zn,Cd; Y=Si,Sn;Z=pnicogens) chalcopyrite compounds: first-principles calculations.– Experimental and Theoretical NANOTECHNOLOGY, vol.7, pp.97-110,
https://doi.org/10.56053/7.1.9....
53.
Li L. and Naher S. (2023): Half-metallic behavior Co2YAl (Y= Mo,Tc) compounds.– Experimental and Theoretical NANOTECHNOLOGY, vol.7, pp.127-138,
https://doi.org/10.56053/7.1.1....
54.
Christ J., Filips M., Artois S., Nowak R., Reed M. and Knoll W. (2023): Sliding wear of rubber/layered silicate nanocomposites.– Experimental and Theoretical NANOTECHNOLOGY, vol.7, pp.159-170,
https://doi.org/10.56053/7.1.1....
55.
Al-Jassim M., Grüner G. and Guo J. (2022): GaN on Si (111) nanostructure for solar cells application.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.447-452,
https://doi.org/10.56053/6.4.4....
56.
Felser C., Kaskel S. and Rubio A. (2022): Surface ion with Mo, Ti and Al for steel studies.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.477-484,
https://doi.org/10.56053/6.4.4....
57.
Sharma S. (2022): In-doped aluminum antimonide alloy for optoelectronic applications.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.295-316,
https://doi.org/10.56053/6.3.5....
58.
Alex S. (2022): Micro-size aluminum for environmental detonation.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.333-345,
https://doi.org/10.56053/6.3.3....
59.
Ismail O. (2022): Analysis of localized corrosion on stainless steel.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.209-222,
https://doi.org/10.56053/6.2.2....
60.
Sealen M. and Engstrom O. (2022): Morphological studies of Si nanowires effect on the photovoltaics.– Experimental and Theoretical NANOTECHNOLOGY, vol.6, pp.53-60,
https://doi.org/10.56053/6.1.5....