ORIGINAL PAPER
Triple- Diffusive Convection in a Micropolar Ferrofluid in the Presence of Rotation
More details
Hide details
1
Department of Mathematics, SCVB Govt. College Palampur HP-176061 INDIA
Online publication date: 2013-06-08
Publication date: 2013-06-01
International Journal of Applied Mechanics and Engineering 2013;18(2):307-327
KEYWORDS
ABSTRACT
This paper deals with the theoretical investigation of the triple-diffusive convection in a micropolar ferrofluid layer heated and soluted below subjected to a transverse uniform magnetic field in the presence of uniform vertical rotation. For a flat fluid layer contained between two free boundaries, an exact solution is obtained. A linear stability analysis theory and normal mode analysis method have been employed to study the onset convection. The influence of various parameters like rotation, solute gradients, and micropolar parameters (i.e., the coupling parameter, spin diffusion parameter and micropolar heat conduction parameter) on the onset of stationary convection has been analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is also determined numerically for sufficiently large value of the buoyancy magnetization parameter M1 (ratio of the magnetic to gravitational forces). The principle of exchange of stabilities is found to hold true for the micropolar fluid heated from below in the absence of micropolar viscous effect, microinertia, solute gradient and rotation. The oscillatory modes are introduced due to the presence of the micropolar viscous effect, microinertia , solute gradient and rotation, which were non-existent in their absence. In this paper, an attempt is also made to obtain the sufficient conditions for the non-existence of overstability.
REFERENCES (34)
1.
Abraham A. (2002): Rayleigh-Bénard convection in a micropolar ferromagnetic fluid. - Int. J. Eng. Sci., vol.40, No.4, pp.449-460.
2.
Ahmadi A. (1976): Stability of a micropolar fluid layer heated from below. - Int. J. Eng. Sci., vol.14, No.1, pp.81-89.
3.
Bhattacharyya S.P. and Abbas M. (1985): On the stability of a hot rotating layer of micropolar fluid. - Int. J. Eng. Sci., vol.23, pp.371-374.
4.
Bhattacharyya S.P. and Jena S.K. (1983): On the stability of a hot layer of micropolar fluid. - Int. J. Eng. Sci., vol.21, No.9, pp.1019-1024.
5.
Chandrasekhar S. (1981): Hydrodynamic and Hydromagnetic Stability. - New York: Dover Publication.
6.
Datta A.B. and Sastry V.U.K. (1976): Thermal instability of a horizontal layer of micropolar fluid heated from below. - Int. J. Eng. Sci., vol.14, pp.631-637.
7.
Eringen A.C.( 1966): Theory of micropolar fluids. - J. Math. Mech., vol.16, pp.1-18.
8.
Eringen A.C. (1972): Theory of thermomicrofluids. - J. Math. Anal. Appl., vol.38, pp.480-496.
9.
Finlayson B.A. (1970): Convective instability of ferromagnetic fluids. - J. Fluid Mech., vol.40, No.4, pp.753-767.
10.
Gotoh K. and Yamada M. (1982): Thermal convection in a horizontal layer of magnetic fluids. - J. Phys. Soc. Jpn., vol.51, pp.3042-3048.
11.
Kazakia Y. and Ariman T. (1971): Heat-conducting micropolar fluids. - Rheol. Acta., vol.10, pp.319-325.
12.
Lalas D.P. and Carmi S. (1971): Thermoconvective stability of ferrofluids. - Phys. Fluids, vol.14, No.2, pp.436-437.
13.
Lebon G. and Perez-Garcia C. (1981): Convective instability of a micropolar fluid layer by the method of energy. - Int. J. Eng. Sci., vol.19, No.10, pp.1321-1329.
14.
Lopez Amalia R., Louis A. Romero and Pearlstein Arne J. (1990): Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. - Phys. Fluids A, vol.2, pp.897.
15.
Payne L.E. and Straughan B. (1989): Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid. - Int. J. Eng. Sci., vol.27, No.7, pp.827-836.
16.
Pearlstein A.J., Harris R.M. and Terrones G. (1989): The onset of convective instability in a triply diffusive fluid layer. - Journal of Fluid Mechanics, vol.202, pp.443-465.
17.
Qin Y. and Kaloni P.N. (1992): A thermal instability problem in a rotating micropolar fluid. - Int. J. Eng. Sci., vol.30, pp.1117-1126.
18.
Rosensweig R.E. (1995): Ferrohydrodynamics. - Cambridge: Cambridge University Press.
19.
Sastry V.U.K. and Rammohan Rao V. (1983): Numerical solution of thermal instability of a rotating micropolar fluid layer. - Int. J. Eng. Sci., vol.21, pp.449.
20.
Sharma R.C. and Kumar P. (1994): Effect of rotation on thermal convection in micropolar fluids. - Int. J. Eng. Sci., vol.32, pp.545-551.
21.
Sharma R.C. and Kumar P. (1995): On micropolar fluids heated from below in hydromagnetics. - J. Non-Equilib. Thermodyn., vol.20, pp.150-159.
22.
Sharma R.C. and Kumar P. (1997): On micropolar fluids heated from below in hydromagnetics in porous medium. - Czech. J. Phys., vol.47, pp.637-647.
23.
Sharma R.C. and Gupta U. (1995): Thermal convection in micropolar fluids in porous medium. - Int. J. Eng. Sci., vol..33, No.13, pp.1887-1892.
24.
Siddheshwar P.G. (1993): Rayleigh-Be´nard convection in a ferromagnetic fluid with second sound. - Jpn. Soc. Mag. Fluids, vol.25, pp.32-36.
25.
Siddheshwar P.G. (1995): Convective instability of ferromagnetic fluids bounded by fluid permeable magnetic boundaries. - J. Magn. Magn. Mater., vol.149 (1-2), pp.148-150.
26.
Stiles P.J. and Kagan M. (1990): Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. - J. Magn. Magn. Mater., vol.85 (1-3), pp.196-198.
27.
Straughan B. and. Walker D.W. (1997): Multi component diffusion and penetrative convection. - Fluid Dynamics Research, vol.19, pp.77-89. Sunil, Divya and Sharma R.C. (2004): Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous Medium. - J. Geophys. Eng., vol.1, No.2, pp.116-127.
28.
Sunil, Divya and Sharma V. (2005): Effect of dust particles on rotating ferromagnetic fluid heated from below saturating a porous Medium. - J. Colloid Interface Sci., vol.291, pp.152-161.
29.
Sunil, Divya and Sharma R.C. ( 2005): Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous Medium. - J. Magn. Magn. Mater., vol.288, No.1, pp.183-195.
30.
Sunil, Divya and Sharma R.C. (2005): The effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluids aturating a porous medium. - Trans. Porous Media, vol.60, No.3, pp.251-274.
31.
Sunil, Anu Sharma and Sharma R.C. (2006): Effect of dust particles on ferrofluid heated and soluted from below. - Int. J. Therm. Sci., vol.45, No.4, pp.347-358.
32.
Sunil and Amit Mahajan (2009): A nonlinear stability analysis in a double- diffusive magnetized ferrofluid with magnetic -field dependent viscosity saturating a porous medium. - Can. J. Phys., vol.87, pp.659-673.
33.
Sunil, Prakash C., Pavan K. and Mahajan A. (2008): Thermal convection in micropolar ferrofluid in the presence of rotation. - Journal of Magnetism and Magnetic Materials, vol.32, pp.316-324.
34.
Zahn M. and Greer D.R. (1995): Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields. - J. Magn. Magn. Mater., vol.149 (1-2), pp.165-173.