ORIGINAL PAPER
Two-dimensional deformation of an elastic layer subjected to surface loads
,
 
 
 
More details
Hide details
1
Department of Mathematics, Guru Jambheshwar University of Science and Technology, India
 
These authors had equal contribution to this work
 
 
Submission date: 2024-03-24
 
 
Final revision date: 2024-06-06
 
 
Acceptance date: 2024-07-11
 
 
Online publication date: 2024-12-12
 
 
Publication date: 2024-12-12
 
 
Corresponding author
Sunita Rani   

Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, India
 
 
International Journal of Applied Mechanics and Engineering 2024;29(4):143-161
 
KEYWORDS
TOPICS
ABSTRACT
The two-dimensional deformation of a uniform, elastically isotropic layer of a finite thickness (FT) over a rough-rigid base caused by surface loads has been solved analytically. The stresses and the displacements for an isotropic layer are obtained in the integral form by applying the Airy’s stress function approach. Using the appropriate boundary conditions, the problem of surface loads is discussed in detail. The integrals cannot be evaluated analytically due to the complicated expression of denominator. The linear combination of exponential terms occurring in the denominator is expanded by a finite sum of exponential terms (FSET) using the method of least squares and then the integrals are evaluated analytically. The analytical displacements are obtained for normal strip loading, normal line loading and shear line loading. The displacements have been plotted numerically for normal strip loading to find the effect of layer thickness for a Poissonian layer and compared with the half-space.
REFERENCES (19)
1.
Small J.C. and Booker J.R. (1984): Finite layer analysis of layered elastic materials using a flexibility approach. Part 1- strip loadings.– Int. J. Numer. Meth. Eng., vol.20, pp.1025-1037.
 
2.
Small J.C. and Booker J.R. (1986): Finite layer analysis of layered elastic materials using a flexibility approach. Part 2- circular and rectangular loadings.– Int. J. Numer. Meth. Eng., vol.23, pp.959-978.
 
3.
Garg N.R. and Singh S.J. (1985): Residual response of a multilayered half-space to two-dimensional surface loads.– Bull. Ind. Soc. Earthq. Tech., vol.22, pp.39-52.
 
4.
Garg N.R. and Singh S.J. (1987): 2-D static response of a transversely isotropic multilayered half-space to surface loads.– Indian J. Pure Appl. Math., vol.18, pp.763-777.
 
5.
Chaudhuri P.K. and Bhowal S. (1989): Two-dimensional static response of a transversely isotropic multilayered nonhomogeneous half-space to surface loads.– Geophys. Res. Bull., vol.27, pp.77-87.
 
6.
Pan E. (1989): Static response of a transversely isotropic and layered half-space to general surface loads.– Phys. Earth Planet. Inter.,vol.54, pp.353-363.
 
7.
Garg N.R., Singh S.J. and Manchanda S.(1992): Static deformation of an orthotropic multilayered elastic half-space by two-dimensional surface loads.– Proc. Indian Acad. Sci., vol.100, pp.205-218.
 
8.
Wang C.D., Tzeng C.S., Pan E. and Liao J.J. (1999): Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space.– Int. J. Rock Mech. Min. Sci., vol.40, pp.667-685.
 
9.
Madan D.K., Chugh S. and Singh K. (2011): Stresses in an anisotropic elastic plate due to strip-loading.– Int. J. Mech., vol.5, pp.57-62.
 
10.
Ji D., Zhao H., Wang L., Cheng H. and Xu J.(2021):Analytical solution of stress in a transversely isotropic floor rock mass under distributed loading in an arbitrary direction.– Appl. Sci., vol.11, pp.10476.
 
11.
Pany C. (2022): An insight on the estimation of wave propagation constants in an orthogonal grid of a simple line-supported periodic plate using a finite element mathematical model.– Front. Mech. Eng., vol.8, DOI:10.3389/fmech.2022.926559.
 
12.
Sneddon I.N. (1951): Fourier Transforms.– McGraw Hill Book Company, New York.
 
13.
Scarborough J.B. (1955): Numerical Mathematical Analysis. Fifth edition.– Johns Hopkins University Baltimore.
 
14.
Sharma R.K. and Garg N.R. (1994): Stresses in an elastic plate lying over a base due to strip-loading.– Proc. Indian Acad. Sci., vol.104, pp.425-433.
 
15.
Chohla A. and Rani S. (2023): Antiplane deformation of an orthotropic layer due to surface loads.– GEM - Int. J. Geomath., vol.14, pp.28-43.
 
16.
Mal A.K. and Singh S. J.(1991): Deformation of elastic solids.– Prentice Hall, New Jersey.
 
17.
Sokolnikoff I.S. (1956): Mathematical Theory of Elasticity.– Tata McGraw-Hill Publishing Company, New York.
 
18.
Singh S.J. and Rani S. (2006): Plane strain deformation of a multilayered poroelastic half-space by surface loads.– J. Earth Syst. Sci., vol.115, pp.685-694.
 
19.
Gradshteyn I.S. and Ryzhik I.M. (2014): Tables of integrals, series and products. Eighth edition.– Academic Press, Elsevier.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top