ORIGINAL PAPER
Unsteady Electro-Magneto Hydrodynamic Flow and Heat Transfer of Two Ionized Fluids in a Rotating System with Hall Currents
More details
Hide details
1
Department of Engineering Mathematics, AUCE(A), Andhra University, Visakhapatnam, Pin-530003, India
Online publication date: 2022-03-17
Publication date: 2022-03-01
International Journal of Applied Mechanics and Engineering 2022;27(1):125-145
KEYWORDS
ABSTRACT
An unsteady flow and heat transmission of ionized gases via a horizontal channel enclosed by non-conducting plates in a rotating framework with Hall currents is examined using electro-magnetohydrodynamic (EMHD) two-fluid heat flow. The Hall current impact is taken into account by assuming that the gases are totally ionized, the applied transverse magnetic field is very strong. For temperature and velocity distributions in two-fluid flow regions, the governing equations are solved analytically. For numerous physical parameters such as the Hartmann number, Hall parameter, rotation parameter, viscosity ratio, and so on, numerical solutions are visually displayed. It was discovered that an increase in temperature in the two regions is caused by the thermal conductivity ratio. It was also realized that an increase in rate of heat transfer coefficient at the plates is caused by either the Hartman number or the Hall parameter.
REFERENCES (49)
1.
Hartmann J. (1937): Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field.− Mat.-Fys. Medd. Kgl. Danskevid Selskab, vol.15, No.6, pp.1-28.
2.
Mayer R.C. (1958): On reducing aerodynamic heat-transfer rates by magnetohydrodynamic technique.– J. Aerospace Sci., vol.25, pp.561-572.
3.
Cowling T.G. (1962): Magnetohydrodynamics.− Rep. Prog. Phys., vol.25, pp.244.
4.
Blum Ya.E. (1967): Heat and Mass Transfer in Magnetic Field.− Magnetohydrodynamics, vol.11, No.1, pp.27-36.
5.
Cramer K.R. and Pai Shih-I. (1973): Magnetofluid dynamics for engineers and applied physicists.– McGraw-Hill Company.
6.
Shercliff J.A. (1979): Thermoelectric magnetohydrodynamics.− J. Fluid Mechanics, vol.91, No.2, pp. 231-251.
7.
Aithal S.M. (2008): Analysis of optimum power extraction in a MHD generator with spatially varying electrical conductivity.− Int. J. of Thermal Science, vol.47, pp.1107-1112.
8.
Kabeel A.E., Emad EI-Said M.S. and Dafea S.A. (2015): A review of magnetic fields effects on flow and heat transfer in liquids: present status and future potential for studies and applications.– Renewable and Sustainable Energy Reviews, vol.45, pp.830-837.
9.
Selimli S., Resebli Z. and Arcakhoglu E. (2015): Combined effects of magnetic and electric field on hydrodynamic and thermo-physical parameters of magneto-viscous fluid flow.− Int. J. Heat Mass Trans., vol.86, pp.426-432.
10.
Broer L.J.F. and Peletier L.A. (1960): A mechanical. Hall effect.− Appl. Sci. Res., vol.8B, pp.259.
11.
Sato H. (1961): The Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field.− J. Phys. Soc. Japan, vol.16, No.7, pp.1427-1433.
12.
Sharma R.C. and Neela Rani (1988): Hall effects of thermo-solute instability of a plasma.− Indian J. Pure Appl. Math, vol.19, No.2, pp.202-207.
13.
Niranjan S.S., Soundalgekar V.M. and Takhar H.S. (1990): Free convection effects on MHD horizontal channel flow with Hall currents.– Plasma Sci. IEEE Trans, vol.18, No.2, pp.177-183.
14.
Linga Raju, T. and Ramana Rao V.V. (1992): Hall Effect in the viscous flow of an ionized gas between two parallel walls under transverse magnetic field in a rotating system.− Acta Physica Hungarica, vol.72, No.1, pp.23-45.
15.
Linga Raju, T. and Ramana Rao V.V.(1993): Hall effects on temperature distribution in a rotating ionized hydromagnetic flow between parallel walls.− Int. J. Engg. Sci., vol.31, No.7, pp.1073-1091.
16.
Attia H.A. (1998): Hall current effects on the velocity and temperature fields of an unsteady Hartmann flow.− Can. J. Phys., vol.76, No.9, pp.739-746.
17.
Macheret S.O., Shneider M.N. and Miles R.B. (2004): Magnetohydrodynamic and electro-magnetic control of hypersonic flows of weakly ionized plasmas.– AIAA J., vol.42, pp.1378-1387.
18.
Ghosh S.K. and Pop I. (2004): Hall effects on MHD plasma Couette flow in rotating environment.– Int. J. Appl. Mech. and Engng., vol.9, pp.293-305.
19.
Linga Raju T. and P.S.R. Murty. (2005): Quasi-steady state solutions of MHD ionized flow and heat transfer with Hall currents between parallel walls in a rotating system.− Bulletin of Pure and Applied sciences (An Int. Research Journal of Sciences), Section-E: Maths. & Stat., vol.24E, No.2, pp.467-490.
20.
Srivastava K.M. (2009): Effect of Hall current on the instability of an anisotropic plasma Jet.− J. Plasma Phys., vol.12, No.1, pp.33-43.
21.
Jha B.K. and Apere C.A. (2010): Combined effects of Hall and ion-slip currents on unsteady MHD Couette flolws in a rotating system.– J. Phys. Soc. Japan, vol.79, DOI:10.1143/JPSJ.79.104401.
22.
Singh J.K., Begum S.G. and Seth G.S. (2018): Influence of Hall current and wall conductivity on hydromagnetic mixed convective flow in a rotating Darcian channel.− Physics of fluids, vol.30, No.11, pp.113602-1 to 12.
23.
Ryabinin A.G. and Khozhainov A.I. (1967): Exact and approximate formulations of problems for unsteady flows of conducting fluids in MHD channels.– Fluid Dyn., vol.2, No.4, pp.107-109.
24.
Debnath L. (1975): Inertial oscillations and hydromagnetic multiple boundary layers in a rotating fluid.− ZAMM (Zeitschrift Fur Angewandte Mathematik and Mechanik), vol.52, pp.141-147.
25.
Takenouchi K.(1985): Transient magnetohydrodynamic channel flow with an axial symmentry at a supersonic speed.− J. Phys. Soc. Japan., vol.54, pp.1329-1338.
26.
Barmin, A.A and Uspenskii V.S. (1986): Development of pulsations regimes in one dimensional unsteady MHD flows with switching off of the electrical conductivity.– Fluid Dyn., vol.21, No.4, pp.18-30.
27.
Singh A.K., Sacheti N.C. and Chandran P.(1994): Transient effects on magnetohdrodynamic Couette flow with rotation: Accelerated motion.− Int. J. Engng. Sci., vol.32, pp.133-139.
28.
Chamkha A.J. (2000): Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes.− Int. J. of Heat and Fluid Flow, vol.21, pp.740-746.
29.
Chen L., Gong J., Sun F. and Wu C. (2002): Heat transfer effect on the performance of MHD power plant.− Energy Conversion and Management, vol.43, No.15, pp.2085-2095.
30.
Morley N.B., Malang S. and Kirillov I. (2005): Thermofluid magnetohydrodynamic isuues for liquid breeders.− Fusion Science and Technology, vol.47, pp.488-501.
31.
Triwahju Hardianto T., Sakamoto N. and Harada N. (2008): Computational study of diagonal channel magnetohydrodynamic power generation.– Int. J. Energy Tech. Policy, vol.6, pp.96-111.
32.
Chwla T.C. and Ishii M. (1980): Two-fluid model of two-phase flow in a pin bundle of a nuclear reactor.− Int. J. Heat Mass Transfer, vol.23, pp.991-1001.
33.
Mitra P. (1982): Unsteady flow of two electrically conducting fluids between two rigid parallel plates.− Bulletin of the Calcutta Mathematical Society, vol.74, pp.87-95.
34.
Hasnain Qaisrani M., ZhenWei Xia and Dandan Zou (2005): Statistical properties of three-dimensional two-fluid plasma model.− Phys. Plasmas, vol. 22, pp.092303-1 to 9, doi.org/10.1063/1.4928900.
35.
Hyun S. and Kennel C.F. (2009): Small amplitude waves in a hot relativistic two-fluid plasma.− J. Plasma Phy., vol.20, No.2, pp.281-287.
36.
Linga Raju T. and Seedhar S. (2009): Unsteady two-fluid flow and heat transfer of conducting fluids in channels under transverse magnetic field.− Int. J. Appl. Mech. and Engg., vol.14, No.4, pp.1093-1114.
37.
Naga Valli M., Linga Raju T. and Kameswaran P.K. (2022): Two layered flow of ionized gases within a channel of parallel permeable plates under applied magnetic field with Hall effect.– To Appear in Springer Proceedings of 8 th International Conference on Mathematics and Computing, (ICMC-2022) held during January 6-8, 2022 at VIT, Vellore, India, Submission No.208.
38.
Shail R. (1973): On laminar two-phase flows in magnetohydrodynamics.− Int. J. Engg. Sci., vol.11, pp.1103-1109.
39.
Lohrasbi J. and Sahai V. (1988): Magnetohydrodynamic heat transfer in two phase flow between parallel plates.− Appl. Sci. Res., vol.45, pp.53-66.
40.
Malashetty M.S. and Leela V. (1992): Magnetohydrodynamic heat transfer in two phase flow.− Int. J. of Engg. Sci. vol.30, pp.371-377.
41.
Chamkha A.J. (1995): Hydromagnetic two-phase flow in a channel.− Int. J. Engg. Sci., vol.33, No.3, pp.437-446.
42.
Umavathi J.C., Mateen A., Chamkha A.J. and Al-Mudhaf A. (2006): Oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel.− Int. J. Appl. Mech. and Engg. vol.11, No.1, pp.155-178.
43.
Linga Raju T. and Nagavalli M. (2014): MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between parallel plates in a rotating system.− Int. J. Appl. Mech. and Engg., vol.19, No.1, pp.97-121.
44.
Sharma P.R. and Sharma Kalpana (2014): Unsteady MHD two-fluid flow and heat transfer through a horizontal channel.− Int. J. of Engineering Science Invention Research and Development, vol.1, No.3, pp.65-72.
45.
Sivakamini L and Govindarajan A. (2019): Unsteady MHD flow of two immiscible fluids under chemical reaction in a horizontal channel.− AIP conference proceedings 2112. pp.020157-1 to 9, doi.org/10.1063/1.5112342.
46.
Linga Raju T. (2019): MHD heat transfer two-ionized fluids flow between two parallel plates w ith Hall currents.– Results in Engineering, vol.4, 100043, p.15, doi.org/10.1016/j.rineng.2019.100043.
47.
Abd Elmaboud Y., Abdesalam Sara I., Mekheimer Kh.S. and Kambiz Vafai (2019): Electromagnetic flow for two-layer immiscible fluids.− Engineering Science and Technology, an International Journal, vol.22, pp.237-248.
48.
Linga Raju T. and Gowri Sankara Rao V. (2021): Effect of Hall current on unsteady magnetohydro dynamic two-ionized fluid flow and heat transfer in a channel.− Int. J. of Applied Mechanics and Engg., vol.26, No.2, pp. 84-106, DOI: 10.1515/ijame-2021-0038.
49.
Linga Raju T. (2021): Electro-magnetohydrodynamic two fluid flow of ionized-gases with Hall and rotation effects.− Int. J. Appl. Mech., vol.26, No.4. pp.128-144, DOI: 10.2478/ijame-2021-0054.