ORIGINAL PAPER
Unsteady MHD Mixed Convection Flow of a Micropolar Fluid Over a Vertical Wedge
,
 
 
 
More details
Hide details
1
Department of Mathematics, University of Dhaka, Dhaka, BANGLADESH
 
2
Department of Mechanical Engineering Purdue University Northwest Westville, IN 46391, New York, United States of America
 
 
Online publication date: 2017-06-09
 
 
Publication date: 2017-05-24
 
 
International Journal of Applied Mechanics and Engineering 2017;22(2):363-391
 
KEYWORDS
ABSTRACT
An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. The Prandtl number, the conduction-radiation parameter, the surface temperature parameter and the pressure gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient parameter and the magnetic field parameter.
REFERENCES (25)
1.
Sing P.J., Roy S. and Ravindran R. (2009): Unsteady mixed convection flow over a vertical wedge. - Int. J. Heat Mass Transf., vol.52, pp.415-421.
 
2.
Lin H.T. and Lin L.K. (1987): Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. - Int. J. Heat Mass Transf., vol.30, No.6, pp.1111-1118.
 
3.
Watanabe T. (1990): Thermal boundary layers over a wedge with uniform suction or injection in forced flow. - Acta Mech., vol.83, pp.119-126.
 
4.
Watanabe T. (1991): Forced and free mixed convection boundary layer flow with uniform suction or injection on a vertical flat plate. - Acta Mech., vol.89, pp.123-132.
 
5.
Watanabe T., Funazaki K. and Taniguchi H. (1994): Theoretical analysis on mixed convection boundary layer flow over a wedge with uniform suction or injection. - Acta Mech., vol.105, pp.133-141.
 
6.
Lok Y.Y., Amin N. and Pop I. (2003): Unsteady boundary layer flow of a micropolar fluid near the rear stagnation point of a plane surface. - Int. J. Therm. Sci., vol.42, pp.995-1001.
 
7.
Kim Y.J. (1999): Thermal boundary layer flow of a micropolar past a wedge with constant wall temperature. - Acta Mechanica, vol.138, pp.113-121.
 
8.
Kim Y.J. and Kim T.A. (2003): Convective micropolar boundary layer flows over a wedge with constant surface heat flux. - Int. J. Appl. Mech. Eng., vol.8, pp.147-153, Special issue: ICER 2003.
 
9.
Mohammadein A.A. and Gorla R.S.R. (1996): Effects of transverse magnetic field on mixed convection in a micropolar fluid on a horizontal plate with vectored mass transfer. - Acta Mech., vol.118, pp.1-12.
 
10.
Yih K.Y. (1999): MHD forced convection flow adjacent to a non-isothermal wedge. - Int. Comm. Heat Mass Transf., vol.26, No.6, pp.819-827.
 
11.
Ishak A., Nazar R. and Pop I. (2008): MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature. - Acta Mech., vol.196, pp.75-86.
 
12.
Ishak A., Nazar R. and Pop I. (2009): MHD boundary layer flow of a micropolar fluid past a wedge with constant wall heat flux. - Commun. Nonlinear Sci. Numer. Simul., vol.14, pp.109-118.
 
13.
Gorla R.S.R., Takhar H.S. and Slaouti A. (1998): Magnetohydrodynamic free convection boundary layer flow of a thermomicropolar fluid over a vertical plate. - Int. J. Eng. Sci., vol.36, No.3, pp.315-327.
 
14.
Bhargava R., Kumar L. and TakharH.S. (2003): Numerical solution of free convection MHD micropolar fluid flow between two parallel porous vertical plates. - Int. J. Eng. Sci., vol.41, pp.123-136.
 
15.
Nanousis N.D. (1999): Theoretical magnetohydrodynamic analysis of mixed convection boundary-layer flow over a wedge with uniform suction or injection. - Acta Mech., vol.138, pp.21-30.
 
16.
Kumari M., Takhar H.S. and Nath G. (2001): Mixed convection flow over a vertical wedge embedded in a highly porous medium. - Heat Mass Transfer, vol.37, pp.139-146.
 
17.
Watanabe T. and Pop I. (1993): Magnetohydrodynamic free convection flow over a wedge in the presence of a transverse magnetic field. - Int. Comm. Heat Mass Transf., vol.20, pp.871-881.
 
18.
Vajravelu K. and Nayfeh J. (1992): Hydromagnetic convection at a cone and a wedge. - Int. Commun. Heat Mass Transfer, vol.19, pp.701-710.
 
19.
Ganapathirao M., Ravindran R. and Pop I. (2013): Non-uniform slot suction (injection) on an unsteady mixed convection flow over a wedge with chemical reaction and heat generation or absorption. - Int. J. Heat Mass Transf., vol.67, pp.1054-1061.
 
20.
Yih K.A. (1999): MHD forced convection flow adjacent to a non-isothermal wedge. - Int. Comm. Heat Mass Transfer, vol.26, pp.819-827.
 
21.
Chamkha A.J., Mujtaba M., Quadri A. and Issa C. (2003): Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of heat source or sink. - Heat Mass Transf., vol.39, pp.305-312.
 
22.
Uddin Z., Kumar M. and Harmand S. (2014): Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering Hall and ion slip currents. - Thermal Sci., vol.18, No.2, pp.489-502.
 
23.
Raptis A. (1998): Flow of a micropolar fluid past a continuously moving plate by the presence of radiation. - Int. J. Heat Mass Transf., vol.41, pp.2865-2866.
 
24.
Butcher J.C. (1964): Implicit Runge-Kutta Method. - Math. Com., vol.18, pp.50-55.
 
25.
Naschtsheim P.R. and Sweigert P. (1965): Satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of boundary layer type. - NASA TN D-3004.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top