ORIGINAL PAPER
Variable Gravity Effects on Thermal Instability of Nanofluid in Anisotropic Porous Medium
More details
Hide details
1
Department of Mathematics, Government P.G. College Dhaliara, Himachal Pradesh, INDIA
2
Department of Mathematics, NSCBM Govt. P.G. College Hamirpur, Himachal Pradesh, INDIA
3
Department of Mathematics, Govt. P.G. College Mandi, Himachal Pradesh, INDIA
Online publication date: 2013-09-06
Publication date: 2013-08-01
International Journal of Applied Mechanics and Engineering 2013;18(3):631-642
KEYWORDS
ABSTRACT
In this paper, we study the effects of variable gravity on thermal instability in a horizontal layer of a nanofluid in an anisotropic porous medium. Darcy model been used for the porous medium. Also, it incorporates the effect of Brownian motion along with thermophoresis. The normal mode technique is used to find the confinement between two free boundaries. The expression of the Rayleigh number has been derived, and the effects of variable gravity and anisotropic parameters on the Rayleigh number have been presented graphically
REFERENCES (28)
1.
Alex S.M., Prabhamani R.P. and Vankatakrishan K.S. (2001): Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient. - Fluid Dynamics Research, vol.29, pp.1-6.
2.
Alloui Z., Vasseur P. and Reggio M. (2010): Natural convection of nanofluids in a shallow cavity heated from below. - International Journal of Thermal Science, online xxx, pp.1-9.
3.
Buongiorno J. (2006): Convective transport in nanofluids. - ASME Journal of Heat Transfer, vol.128, pp.240-250.
4.
Chand R. (2011): Effect of suspended particles on thermal instability of Maxwell visco-elastic fluid with variable gravity in porous medium. - Antarctica J. Math, vol.8(6), pp.487-497.
5.
Chand R. (2012): Thermal instability of rotating Maxwell visco-elastic fluid with variable gravity in porous medium. - Journal of the Indian Math. Soc. Accepted for publications.
6.
Chand R. (2012): Thermal instability of rotating nanofluid. - Int. J. of Appl. Math and Mech. Accepted for publication.
7.
Chand R. and Rana G.C. (2012): On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. - Int. J. Heat Mass Transf., Accepted for publication.
8.
Chandrasekhar S. (1981): Hydrodynamic and Hydromagnetic Stability. - New York: Dover Publication.
9.
Choi S. (1995): Enhancing thermal conductivity of fluids with nanoparticles. - In: Siginer D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED-vol.231/MD-vol.66, pp.99-105.
10.
Dhananjay Agrawal G.S. and Bhargava R (2010): Rayleigh Bénard convection in nanofluid. - Int. J. of Appl. Math and Mech. vol.7(2), pp.61-76.
11.
Ingham D.D. and Pop L. (1981): Transport Phenomena in Porous Media. - New York: Elsvier.
12.
Kim S.J., Bang I.C., Buongiorno J and Hu L.W. (2007): Study of pool boiling and critical heat flux enhancement in nanofluids. - Bulletin of the Polish Academy of Sciences-Technical Sciences, vol.55,2, pp.211-216.
13.
Kuznetsov A.V. and Nield D.A. (2010a): Effect of local Thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. - Transport in Porous Media, vol.83, pp.425-436.
14.
Kuznetsov A.V. and Nield D.A. (2010b): Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. - Transp. Porous Medium, vol.81, pp.409-422.
15.
Kuznetsov A.V. and Nield D.A. (2010c): The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. - Transport in Porous Media, vol.85,3, pp.941-951.
16.
Lapwood E.R. (1948): Convection of a fluid in porous medium. - Proc. Camb. Phil. Soc., vol.44, pp.508-519.
17.
Malashetty M.S. and Kollur P. (2011): The onset of double diffusive convection in a couple stress fluid saturated anisotropic porous layer. - Transp. Porous Med., vol.86, pp.435-459.
18.
Nield D.A. and Bejan A. (2006): Convection in porous medium. - New York: Springer.
19.
Nield D.A. and Kuznetsov A.V. (2010): The onset of convection in a horizontal nanofluid layer of finite depth. - European Journal of Mechanics - B/Fluids, vol.29, pp.217-223.
20.
Nield D.A. and Kuznetsov A.V. (2011a): The onset of double-diffusive convection in a nanofluid layer. - International Journal of Heat and Fluid Flow, vol.32, pp.771-776.
21.
Nield D.A. and Kuznetsov A.V. (2011b): The effect of vertical through flow on thermal instability in a porous medium layer saturated by a nanofluid. - Transport in Porous Media vol.87, pp.765-775.
22.
Nield D.A. and Kuznetsov, A.V. (2009): Thermal instability in a porous medium layer saturated by a nanofluid. - Int. J. Heat Mass Transf. vol.52, pp 5796-5801.
23.
Pradhan G.K., Samal P.C. and Tripathy U.K. (1989): Thermal stability of a fluid layer in a variable gravitational field. - Indian J. Pure Appl. Math., vol.20(7), pp.736-745.
24.
Tzou D.Y. (2008a): Instability of nanofluids in natural convection. - ASME J. Heat Transf., vol.130, pp.072401.
25.
Tzou D.Y. (2008b): Thermal instability of nanofluids in natural convection. - Int. J. Heat Mass Transf., vol.51, pp.2967-2979.
26.
Vadasz P. (2006): Heat conduction in nanofluid suspensions. - ASME J. Heat Transf., vol.128, pp.465-477.
27.
Vafai K.A. and Hadim H.A. (2000): Hand Book of Porous Media. - New York: M. Decker.
28.
Wooding R.A. (1960): Rayleigh instability of a thermal boundary layer in flow through a porous medium. - J. Fluid Mech., vol.9, pp.183-192.