ORIGINAL PAPER
Variable thermal conductivity in micropolar thermoelastic medium without energy dissipation possessing cubic symmetry
 
 
 
More details
Hide details
1
Department of Mathematics, University Institute of Sciences, Chandigarh University Gharuan-Mohali, Punjab, INDIA
 
2
Department of Mathematics, I.G.N College, Ladwa, Haryana, INDIA
 
3
Department of Mathematics and Humanities, Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala, Haryana-133207, INDIA
 
 
Publication date: 2023-03-01
 
 
International Journal of Applied Mechanics and Engineering 2023;28(1):1-10
 
KEYWORDS
ABSTRACT
This investigation deals with the effect of variable thermal conductivity in a micropolar thermoelastic medium without energy dissipation with cubic symmetry. The normal mode technique is employed for obtaining components of physical quantities such as displacement, stress, temperature distribution and microrotation.
 
REFERENCES (30)
1.
Eringen A.C. and Suhubi E. (1964): Nonlinear theory of simple micro-elastic solids-I.– International Journal of Engineering Science, vol.2, No.2, pp.189-203.
 
2.
Eringen A.C. (1966): Linear theory of micropolar elasticity.– Journal of Mathematics and Mechanics, pp.909-923.
 
3.
Nowacki W. (1974a): Dynamical problems of thermo diffusion in solids I.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.55-64.
 
4.
Nowacki W. (1974b): Dynamical problems of thermo diffusion in solids II.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.129-135.
 
5.
Nowacki W. (1974c): Dynamical problems of thermo diffusion in solids III.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.257-266.
 
6.
Eringen A. C. (1984): Plane waves in nonlocal micropolar elasticity.– International Journal of Engineering Science, vol.22, No.8-10, pp.1113-1121.
 
7.
Kumar R. and Ailawalia P. (2007): Moving load response in micropolar thermoelastic medium without energy dissipation possessing cubic symmetry.– International journal of solids and structures, vol.44, No.11-12, pp.4068-4078.
 
8.
Othman M. I., Hasona W. M. and Abd-Elaziz E. M. (2015): Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag.– Journal of Computational and Theoretical Nanoscience, vol.12, No.9, pp.2030-2040.
 
9.
Said S.M., Elmaklizi Y.D. and Othman M.I. (2017): A two-temperature rotating-micropolar thermoelastic medium under influence of magnetic field.– Chaos, Solitons and Fractals, vol.97, pp.75-83.
 
10.
Othman M.I. and Mondal S. (2019): Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories.– International Journal of Numerical Methods for Heat and Fluid Flow, vol.30, No.3, pp.1025-1046.
 
11.
Kalkal K.K., Sheoran D. and Deswal S. (2020): Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation.– Acta Mechanica, vol.231, No.7, pp.2849-2866.
 
12.
Abo-Dahab S. M., Abd-Alla A.M. and Kilany A.A. (2020): Electromagnetic field in fiber-reinforced micropolar thermoelastic medium using four models.– Journal of Ocean Engineering and Science, vol.5, No.3, pp.230-248.
 
13.
Alharbi A.M., Abd-Elaziz E.M. and Othman M.I. (2021): Effect of temperature-dependent and internal heat source on a micropolar thermoelastic medium with voids under 3PHL model.– ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.101, No.6, e202000185.
 
14.
Alharbi A.M. (2021): The effect of diffusion on micropolar thermoelastic medium under 3PHL model.– ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.101, No.9, e202100004.
 
15.
Minagawa S., Arakawa K.I. and Yamada M. (1981): Dispersion curves for waves in a cubic micropolar medium with reference to estimations of the material constants for diamond.– Bulletin of JSME, vol.24, No.187, pp.22-28.
 
16.
Kumar R. and Ailawalia P. (2006): Time harmonic sources at micropolar thermoelastic medium possessing cubic symmetry with one relaxation time.– European Journal of Mechanics-A/Solids, vol.25, No.2, pp.271-282.
 
17.
Kumar R. and Ailawalia P. (2006): Deformation due to time-harmonic sources in a micropolar thermoelastic medium possessing cubic symmetry with two relaxation times.– Applied Mathematics and Mechanics, vol.27, No.6, pp.781-792.
 
18.
Othman M.I., Lotfy K.H. and Farouk R.M. (2009): Effects of magnetic field and inclined load in a micropolar thermoelastic medium possessing cubic symmetry under three theories.– International Journal of Industrial Mathematics, vol.1, No.2, pp.87-104.
 
19.
Kumar R. and Partap G. (2010): Propagation of waves in micropolar thermoelastic cubic crystals.– Applied Mathematics and Information Sciences, vol.4, pp.107-123.
 
20.
Othman M.I., Abo-Dahab S.M. and Alosaimi H.A. (2016): 2D Problem of micropolar thermoelastic rotating medium possessing cubic symmetry under effect of inclined load with GN III.– Journal of Computational and Theoretical Nanoscience, vol.13, No.8, pp.5590-5597.
 
21.
Othman M.I., Abo-Dahab S.M. and Alosaimi H.A. (2018): Effect of inclined load and magnetic field in a micropolar thermoelastic medium possessing cubic symmetry in the context of GN theory.– Multidiscipline Modeling in Materials and Structures, vol.14, pp.306-321.
 
22.
Aouadi M. (2006): Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion.– Zeitschrift für Angewandte Mathematik und Physik ZAMP, vol.57, No.2, pp.350-366.
 
23.
Mondal S., Mallik S.H. and Kanoria M. (2014): Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity.– International Scholarly Research Notices, vol.2014. p.13,.
 
24.
Li C., Guo H. and Tian X. (2017): Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity.– International Journal of Mechanical Sciences, vol.131, pp.234-244.
 
25.
Abbas I., Hobiny A. and Marin M. (2020): Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity.– Journal of Taibah University for Science, vol.14, No.1, pp.1369-1376.
 
26.
Hobiny A.D. and Abbas I. (2022): The impacts of variable thermal conductivity in a semiconducting medium using finite element method.– Case Studies in Thermal Engineering, vol.31, pp.101773.
 
27.
Green A.E. and Naghdi P. (1993): Thermoelasticity without energy dissipation.– Journal of Elasticity, vol.31, No.3, pp.189-208.
 
28.
Youssef H.M. and El-Bary A.A. (2010): Two-temperature generalized thermoelasticity with variable thermal conductivity.– Journal of Thermal Stresses, vol.33, No.3, pp.187-201.
 
29.
Lotfy K. (2019): Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium.– Silicon, vol.11, No.4, pp.1863-1873.
 
30.
Lotfy K., El-Bary A.A. and El-Sharif A.H. (2020): Ramp-type heating microtemperature for a rotator semiconducting material during photo-excited processes with magnetic field.– Results in Physics, vol.19, p.10, 103338.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top