ORIGINAL PAPER
Wave propagation in micropolar monoclinic thermoelastic half space
 
 
 
More details
Hide details
1
Department of Mathematics and Applied Sciences MEC, Muscat, OMAN
 
 
Online publication date: 2014-03-07
 
 
Publication date: 2013-12-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(4):1013-1023
 
KEYWORDS
ABSTRACT
Propagation of waves in a micropolar monoclinic medium possessing hermoelastic properties based on the Lord- Shulman (L-S),Green and Lindsay (G-L) and Coupled thermoelasticty (C-T) theories is discussed. The investigation is divided into two sections, viz., plane strain and anti-plane strain problem. After developing the solution, the phase velocities and attenuation quality factor have been derived and computed numerically. The numerical results have been plotted graphically.
 
REFERENCES (19)
1.
Boschi E. and Iesan D. (1973): A generalized theory of linear micropolar thermoelasticity. - Meccanica, vol.7, pp.154-157.
 
2.
Chandrasekhariah D.S. (1998): Hyperbolic thermoelasticity. A review of recent literature. - Appl. Mech. Rev., vol.51, pp.705-729.
 
3.
Dhaliwal R.S. and Singh A. (1980): Dynamic coupled thermoelasticity. - Hindustan Publication Corporation, New Delhi, India, p.726.
 
4.
Eringen A.C. (1970): Foundations of micropolar thermoelasticity. - Course of Lectures No.23, CSIM Udine Springer.
 
5.
Eringen A.C. (1999): Microcontinuum fields theories I. - Foundations and Solids, New York: Springer Verlag.
 
6.
Hetnarski R.B. and Iganazack J. (1999): Generalized thermoelasticity. - J. Thermal Stresses, vol.22, pp.451-470.
 
7.
Hetnarski R.B. and Iganazack J. (2000): Non classical dynamical thermoelasticity. - IJSS, vol.37 pp.215-224.
 
8.
Hu G.K., Liu X.N. and Lu T.J. (2005): A variational method for nonlinear micropolar composites. - Mechanics of Materials, vol.37, pp.407-425.
 
9.
Lakes R.S. (1983): Size effects and micromechanics of a porous solid. - Journal of Mater. Sci., vol.18(9), pp.2572-2581.
 
10.
Nowacki M. (1966): Couple-stresses in the theory of thermoelasticity. - Proc. IUTAM Symposia, Vienna, Editors H, Parkus and L.I Sedov, Springer-Verlag, pp.259-278.
 
11.
Othman M.I.A. and Gill B.S. (2007): The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. - IJSS, vol.44, pp.2748-2762.
 
12.
Othman M.I.A., Lotfy K. and Farouk R.M. (2009): Effect of magnetic and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories. - Int. J. of Industrial Mathematics. vol.1, pp.87-104.
 
13.
Sharma J.N. and Singh H.(2007): Generalized thermoelastic waves in anisotropic media. - JASA, vol.85, pp.1407-1413.
 
14.
Sharma M.D. (2006): Wave propagation in anisotropic generalized thermoelastic media. - Journal of Thermal Stresses, vol.29, pp.629-642.
 
15.
Sharma M.D. (2007): Reflection of plane harmonic waves in a general anisotropic medium. - JSV, vol.302, pp.629-642.
 
16.
Singh B. (2010): Reflection of plane waves at the free surface of a monoclinic thermoelastic solid half-space. - European Journal of Mechanics-A/Solids, vol.29, pp.911-916.
 
17.
Verma K.L. (2002): On the propagation of waves in layered anisotropic media in generalized thermoelasticity. - IJES, vol.40, pp.2077-2096.
 
18.
Verma K.L. and Hasebe N. (2001) Wave propagation in plates of general anisotropic media in generalized thermoelasticity. - IJES, vol.39, pp.1739-1763.
 
19.
Yuriy T. and Chein-Ching M. (2009): An explicit-form solution to the plane elasticity and thermoelasticity problems for anisotropic and inhomogeneous solids. - IJSS, vol.46, pp.3850-3859.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top